This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A027836 #22 Apr 06 2021 20:15:24 %S A027836 1,2,8,43,268,1824,13156,98865,765948,6075256,49094708,402801425, %T A027836 3346590068,28099903160,238079915640,2032914717645,17476713955548, %U A027836 151143219598008,1314045772469632,11478299163026540,100688538612524720,886622619082002120,7834289222109530340 %N A027836 Total number of vertices in all loopless rooted planar maps with n edges. %C A027836 The number of rooted isthmusless n-edge maps in the plane (planar with a distinguished outside face). - _Valery A. Liskovets_, Mar 17 2005 %D A027836 L. M. Koganov, V. A. Liskovets, T. R. S. Walsh, Total vertex enumeration in rooted planar maps, Ars Combin. 54 (2000), 149-160. %D A027836 V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005. %H A027836 Andrew Howroyd, <a href="/A027836/b027836.txt">Table of n, a(n) for n = 0..500</a> %H A027836 V. A. Liskovets and T. R. Walsh, <a href="http://dx.doi.org/10.1016/j.aam.2005.03.006">Counting unrooted maps on the plane</a>, Advances in Applied Math., 36, No.4 (2006), 364-387. %F A027836 a(n) = 12*n*(4*n-1)!*(5*n^2+13*n+2)/(n!*(3*n+3)!) for n > 0. %F A027836 G.f.: -(1-3*g+g^2)*g where g = 1+x*g^4 is the g.f. of A002293. - _Mark van Hoeij_, Nov 11 2011 %F A027836 a(n) = Sum_{k=1..n+1} k*A342981(n, k). - _Andrew Howroyd_, Apr 06 2021 %p A027836 12*n*(4*n-1)!*(5*n^2+13*n+2)/(n!*(3*n+3)!); %t A027836 Join[{1},Table[12n (4n-1)! (5n^2+13n+2)/(n!(3n+3)!),{n,20}]] (* _Harvey P. Dale_, May 20 2018 *) %o A027836 (PARI) a(n) = if(n==0, 1, 12*n*(4*n-1)!*(5*n^2+13*n+2)/(n!*(3*n+3)!)) \\ _Andrew Howroyd_, Apr 06 2021 %Y A027836 Cf. A000260, A005470, A002293, A342981. %K A027836 nonn %O A027836 0,2 %A A027836 _Valery A. Liskovets_ %E A027836 Offset corrected and terms a(21) and beyond from _Andrew Howroyd_, Apr 06 2021