cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027882 a(n) = Sum_{k>=1} k^n (2/3)^k.

This page as a plain text file.
%I A027882 #33 Aug 06 2024 02:03:31
%S A027882 2,6,30,222,2190,27006,399630,6899262,136125390,3021538686,
%T A027882 74520313230,2021686771902,59833117024590,1918366107872766,
%U A027882 66237821635330830,2450438532592334142,96696400596369539790
%N A027882 a(n) = Sum_{k>=1} k^n (2/3)^k.
%H A027882 C. G. Bower, <a href="/transforms2.html">Transforms</a>
%H A027882 Steffen Greenfield, <a href="http://math.rutgers.edu/~greenfie/oldcourses/192/site/gifstuff/notes/sums-6.html">Source</a>
%H A027882 <a href="/index/Ne#necklaces">Index entries for sequences related to necklaces</a>
%F A027882 Also "CIJ" (necklace, indistinct, labeled) transform of 2, 2, 2, 2...
%F A027882 E.g.f. (for offset 1): -log(3-2*exp(x)). Sum_{k=1..n} 2^k*(k-1)!*Stirling2(n, k). - _Vladeta Jovovic_, Sep 14 2003
%F A027882 a(n) ~ n! / (log(3/2))^(n+1). - _Vaclav Kotesovec_, Oct 07 2013
%t A027882 Table[ PolyLog[n, 2/3], {n, 0, -18, -1}] (* _Robert G. Wilson v_, Aug 05 2010 *)
%t A027882 Table[Sum[StirlingS2[n, k] * (k-1)! * 2^k, {k, 1, n}], {n, 1, 20}] (* _Vaclav Kotesovec_, Jul 12 2018 *)
%o A027882 (PARI) a(n)=polylog(-n,2/3) \\ _Charles R Greathouse IV_, Aug 27 2014
%Y A027882 Cf. A000629, A032183.
%K A027882 nonn
%O A027882 0,1
%A A027882 Stephen J. Greenfield (greenfie(AT)math.rutgers.edu)
%E A027882 More terms from _Christian G. Bower_