This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A027936 #8 Jun 06 2025 03:30:26 %S A027936 1,2,4,5,7,11,12,13,16,22,26,29,33,34,37,46,51,56,67,79,88,89,92,106, %T A027936 121,137,154,155,172,176,191,211,221,232,233,247,254,277,301,326,352, %U A027936 365,376,379,407,436,466,497,529,530,551,562,596 %N A027936 Uniquification of array T given by A027935. %H A027936 G. C. Greubel, <a href="/A027936/b027936.txt">Table of n, a(n) for n = 1..5000</a> %t A027936 A027935[n_, k_]:= A027935[n, k]= Sum[Binomial[n-j, 2*(n-k-j)], {j,0,Floor[(2*n-2*k+ 1)/2]}]; %t A027936 A027936= Table[A027935[n,k], {n,0,225}, {k,0,n}]//Flatten//Union; %t A027936 Table[A027936[[n]], {n,100}] (* _G. C. Greubel_, Jun 06 2025 *) %o A027936 (SageMath) %o A027936 @CachedFunction %o A027936 def A027935(n,k): return sum(binomial(n-j, 2*(n-k-j)) for j in range(int((2*n-2*k+1)/2+1)) ) %o A027936 A027936 = sorted(set(flatten([[ A027935(n,k) for k in range(n+1)] for n in range(103)]))) %o A027936 print([A027936[n] for n in range(100)]) # _G. C. Greubel_, Jun 06 2025 %Y A027936 Cf. A027935. %K A027936 nonn %O A027936 1,2 %A A027936 _Clark Kimberling_