cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027939 a(n) = T(2*n, n+3), T given by A027935.

This page as a plain text file.
%I A027939 #15 Sep 08 2022 08:44:49
%S A027939 1,29,247,1300,5270,18228,56967,166681,467301,1274856,3419252,9076280,
%T A027939 23945893,62955061,165188091,432974764,1134224458,2970340412,
%U A027939 7777628427,20363608737,53314542953,139581703056,365432651464,956718812272,2504726904937,6557465674125
%N A027939 a(n) = T(2*n, n+3), T given by A027935.
%H A027939 G. C. Greubel, <a href="/A027939/b027939.txt">Table of n, a(n) for n = 3..1000</a>
%H A027939 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (9,-34,71,-90,71,-34,9,-1).
%F A027939 G.f.: x^3*(1+20*x+20*x^2-8*x^3-x^4) / ((1-x)^6*(1-3*x+x^2)). - _Colin Barker_, Feb 20 2016
%F A027939 a(n) = Fibonacci(2*n+7) - (195 + 186*n + 90*n^2 + 35*n^3 + 4*n^5)/15. - _G. C. Greubel_, Sep 28 2019
%p A027939 with(combinat); seq(fibonacci(2*n+7) - (195 +186*n +90*n^2 +35*n^3 +4*n^5)/15, n=3..30); # _G. C. Greubel_, Sep 28 2019
%t A027939 Table[Fibonacci[2*n+7] -(195 +186*n +90*n^2 +35*n^3 +4*n^5)/15, {n,3,30}] (* _G. C. Greubel_, Sep 28 2019 *)
%o A027939 (PARI) vector(30, n, my(m=n+2); fibonacci(2*m+7) - (195 +186*m +90*m^2 +35*m^3 +4*m^5)/15) \\ _G. C. Greubel_, Sep 28 2019
%o A027939 (Magma) [Fibonacci(2*n+7) - (195 +186*n +90*n^2 +35*n^3 +4*n^5)/15: n in [3..30]]; // _G. C. Greubel_, Sep 28 2019
%o A027939 (Sage) [fibonacci(2*n+7) - (195 +186*n +90*n^2 +35*n^3 +4*n^5)/15 for n in (3..30)] # _G. C. Greubel_, Sep 28 2019
%o A027939 (GAP) List([3..30], n-> Fibonacci(2*n+7) - (195 +186*n +90*n^2 +35*n^3 +4*n^5)/15 ); # _G. C. Greubel_, Sep 28 2019
%Y A027939 Cf. A000045, A027935.
%K A027939 nonn
%O A027939 3,2
%A A027939 _Clark Kimberling_
%E A027939 Terms a(23) onward added by _G. C. Greubel_, Sep 28 2019