This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A027948 #23 Sep 08 2022 08:44:49 %S A027948 1,1,1,1,2,1,1,3,3,1,1,3,7,4,1,1,3,8,14,5,1,1,3,8,20,25,6,1,1,3,8,21, %T A027948 46,41,7,1,1,3,8,21,54,97,63,8,1,1,3,8,21,55,133,189,92,9,1,1,3,8,21, %U A027948 55,143,309,344,129,10,1,1,3,8,21,55,144,364,674,591,175,11,1 %N A027948 Triangular array T read by rows: T(n,k) = t(n,2k+1) for 0 <= k <= n, T(n,n)=1, t given by A027926, n >= 0. %H A027948 G. C. Greubel, <a href="/A027948/b027948.txt">Rows n = 0..100 of triangle, flattened</a> %F A027948 T(n,k) = Sum_{j=0..n-k} binomial(n-j, 2*(n-k-j) -1) with T(n,n)=1 in the region n >= 0, 0 <= k <= n. - _G. C. Greubel_, Sep 29 2019 %e A027948 Triangle begins with: %e A027948 1; %e A027948 1, 1; %e A027948 1, 2, 1; %e A027948 1, 3, 3, 1; %e A027948 1, 3, 7, 4, 1; %e A027948 1, 3, 8, 14, 5, 1; %e A027948 1, 3, 8, 20, 25, 6, 1; %e A027948 1, 3, 8, 21, 46, 41, 7, 1; ... %p A027948 T:= proc(n, k) %p A027948 if k=n then 1 %p A027948 else add(binomial(n-j, 2*(n-k-j)-1), j=0..n-k) %p A027948 fi %p A027948 end: %p A027948 seq(seq(T(n, k), k=0..n), n=0..12); # _G. C. Greubel_, Sep 29 2019 %t A027948 T[n_, k_]:= If[k==n, 1, Sum[Binomial[n-j, 2*(n-k-j)-1], {j, 0, n-k}]]; %t A027948 Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* _G. C. Greubel_, Sep 29 2019 *) %o A027948 (PARI) T(n,k) = if(k==n, 1, sum(j=0,n-k, binomial(n-j, 2*(n-k-j)-1)) ); %o A027948 for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ _G. C. Greubel_, Sep 29 2019 %o A027948 (Magma) T:= func< n,k | k eq n select 1 else &+[Binomial(n-j, 2*(n-k-j) -1): j in [0..n-k]] >; %o A027948 [T(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Sep 29 2019 %o A027948 (Sage) %o A027948 def T(n, k): %o A027948 if (k==n): return 1 %o A027948 else: return sum(binomial(n-j, 2*(n-k-j)-1) for j in (0..n-k)) %o A027948 [[T(n, k) for k in (0..n)] for n in (0..12)] # _G. C. Greubel_, Sep 29 2019 %o A027948 (GAP) %o A027948 T:= function(n,k) %o A027948 if k=n then return 1; %o A027948 else return Sum([0..n-k], j-> Binomial(n-j, 2*(n-k-j)-1) ); %o A027948 fi; %o A027948 end; %o A027948 Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # _G. C. Greubel_, Sep 29 2019 %Y A027948 The row sums of this (slightly extended) bisection of the "Fibonacci array" A027926 are powers of 2, see A027935 for the other bisection. %K A027948 nonn,tabl %O A027948 0,5 %A A027948 _Clark Kimberling_ %E A027948 Name edited by _G. C. Greubel_, Sep 29 2019