This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A027957 #12 Jun 09 2025 10:25:58 %S A027957 1,1,2,3,7,14,25,46,97,189,344,674,1383,2683,4950,9955,20175,39130, %T A027957 72905,148487,298925,580328,1089343,2233409,4478413,8705686,16438345, %U A027957 33822205,67650909,131688362,251448212,515037942,1028483089,2004688605,3860656125,7878708566,15715540623,30670416703,59451560083 %N A027957 a(n) = greatest number in row n of array T given by A027948. %H A027957 G. C. Greubel, <a href="/A027957/b027957.txt">Table of n, a(n) for n = 0..1000</a> %t A027957 A027948[n_, k_]:= A027948[n, k]= If[k==n, 1, Sum[Binomial[n-j, 2*(n-k-j)-1], {j,0,n- k}]]; %t A027957 b[n_]:= b[n]= Table[A027948[n,k], {k,0,n}]//Union; %t A027957 A027957[n_]:= Max[b[n]]; %t A027957 Table[A027957[n], {n,0,50}] (* _G. C. Greubel_, Jun 07 2025 *) %o A027957 (SageMath) %o A027957 @CachedFunction %o A027957 def A027948(n, k): %o A027957 if (k==n): return 1 %o A027957 else: return sum(binomial(n-j, 2*(n-k-j)-1) for j in (0..n-k)) %o A027957 def b(n): return sorted(set(flatten([ A027948(n,k) for k in range(n+1)]))) %o A027957 def A027957(n): return max(b(n)) %o A027957 print([A027957(n) for n in range(51)]) # _G. C. Greubel_, Jun 07 2025 %o A027957 (Magma) %o A027957 A027948:= func< n,k | k eq n select 1 else (&+[Binomial(n-j, 2*(n-k-j)-1): j in [0..n-k]]) >; %o A027957 b:= func< n | [A027948(n,k): k in [0..n]] >; %o A027957 A027957:= func< n | Max( b(n) ) >; %o A027957 [A027957(n): n in [0..50]]; // _G. C. Greubel_, Jun 08 2025 %Y A027957 Cf. A027948. %K A027957 nonn %O A027957 0,3 %A A027957 _Clark Kimberling_ %E A027957 More terms added by _G. C. Greubel_, Jun 07 2025