This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A027964 #10 Sep 08 2022 08:44:49 %S A027964 1,7,26,73,174,373,743,1404,2552,4506,7784,13226,22193,36889,60882, %T A027964 99947,163430,266455,433495,704150,1142496,1852212,3001056,4860468, %U A027964 7869649,12739243,20619098,33369709,54001422,87385081 %N A027964 T(n,n+4), T given by A027960. %H A027964 G. C. Greubel, <a href="/A027964/b027964.txt">Table of n, a(n) for n = 4..1000</a> %H A027964 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (5,-9,6,1,-3,1). %F A027964 G.f.: x^4*(1+2*x)/((1-x)^4*(1-x-x^2)). - _Ralf Stephan_, Feb 07 2004 %t A027964 Drop[CoefficientList[Series[x^4*(1+2*x)/((1-x)^4*(1-x-x^2)), {x,0,40}], x], 4] (* _G. C. Greubel_, Jun 29 2019 *) %o A027964 (PARI) my(x='x+O('x^40)); Vec(x^4*(1+2*x)/((1-x)^4*(1-x-x^2))) \\ _G. C. Greubel_, Jun 29 2019 %o A027964 (Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( x^4*(1+2*x)/((1-x)^4*(1-x-x^2)) )); // _G. C. Greubel_, Jun 29 2019 %o A027964 (Sage) a=(x^4*(1+2*x)/((1-x)^4*(1-x-x^2))).series(x, 40).coefficients(x, sparse=False); a[4:] # _G. C. Greubel_, Jun 29 2019 %K A027964 nonn %O A027964 4,2 %A A027964 _Clark Kimberling_