This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A027977 #9 Jun 07 2025 16:42:35 %S A027977 1,3,4,8,15,28,54,101,199,373,743,1404,2801,5353,10636,20495,40615, %T A027977 78753,155793,303553,599801,1173183,2316317,4544731,8968421,17641499, %U A027977 34801731,68602923,135308317,267203186,526966454,1042217402,2055373383,4070330014,8027429651,15914813448,31389204737,62291326036,122871494899 %N A027977 a(n) = greatest number in row n of array T given by A027960. %H A027977 G. C. Greubel, <a href="/A027977/b027977.txt">Table of n, a(n) for n = 0..1000</a> %t A027977 T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2*n, 1, If[k==1, 3, T[n-1, k-2] + T[n-1, k-1]]]]; (* T = A027960 *) %t A027977 b[n_]:= b[n]= Table[T[n,k], {k,0,2*n}]//Union; %t A027977 A027977[n_]:= Max[b[n]]; %t A027977 Table[A027977[n], {n,0,50}] (* _G. C. Greubel_, Jun 07 2025 *) %o A027977 (SageMath) %o A027977 @CachedFunction %o A027977 def T(n, k): # T = A027960 %o A027977 if (k<0 or k>2*n): return 0 %o A027977 elif (k==0 or k==2*n): return 1 %o A027977 elif (k==1): return 3 %o A027977 else: return T(n-1, k-2) + T(n-1, k-1) %o A027977 def b(n): return sorted(set(flatten([T(n,k) for k in range(2*n+1)]))) %o A027977 def A027977(n): return max(b(n)) %o A027977 print([A027977(n) for n in range(51)]) # _G. C. Greubel_, Jun 07 2025 %Y A027977 Cf. A027960. %K A027977 nonn %O A027977 0,2 %A A027977 _Clark Kimberling_ %E A027977 More terms added by _G. C. Greubel_, Jun 07 2025