cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027991 a(n) = Sum{T(n,k)*T(n,2n-k)}, 0<=k<=n-1, T given by A027926.

Original entry on oeis.org

1, 3, 12, 40, 130, 404, 1227, 3653, 10720, 31090, 89316, 254568, 720757, 2029095, 5684340, 15855964, 44061862, 122032508, 336966015, 927953705, 2549229256, 6987648358, 19115124552, 52194037200, 142274514025, 387215773899
Offset: 1

Views

Author

Keywords

Comments

From Wolfdieter Lang, Jan 02 2012: (Start)
a(n) = A024458(2*n-1), n>=1 (bisection, odd arguments).
chate(n):=a(n+1), n>=0, is the even part of the bisection of the half-convolution of the sequence A000045(n+1), n>=0, with itself. See a comment on A201204 for the definition of half-convolution. There one finds also the rule for the o.g.f.s of the bisection. Here the o.g.f. of the sequence chate(n), n>=0, is Chate(x):= (Ce(x)+U2(x))/2 with Ce(x)=(1-x+x^2)/(1-3*x+x^2)^2, the o.g.f. of A054444(n), and
U2(x)=(1-x)/((1+x)*(1-3*x+x^2)), the o.g.f. of A007598(n+1), n>=0. This results (after multiplying with x) in the o.g.f. given below in the formula section. It is equivalent to the explicit formula given there, as can be seen after a partial fraction decomposition of the o.g.f.
(End)

Crossrefs

Formula

a(n) = (1/5)[n*F(2n+2) - n*F(2n-2) + F(2n-1) - (-1)^n], F(n)=A000045(n).
O.g.f.: x*(1-2*x+2*x^2)/((1-3*x+x^2)^2*(1+x)). See the comment above. - Wolfdieter Lang, Jan 02 2012