cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027999 Expansion of Product(1+q^m)^(m(m-1)/2); m=1..inf.

This page as a plain text file.
%I A027999 #19 Jul 08 2025 17:58:31
%S A027999 1,0,1,3,6,13,24,49,91,181,334,632,1163,2138,3880,7006,12531,22279,
%T A027999 39369,69078,120597,209282,361405,620829,1061687,1807014,3062642,
%U A027999 5168784,8688820,14549659,24274226,40353748,66854518,110391391,181695436,298129605,487706902
%N A027999 Expansion of Product(1+q^m)^(m(m-1)/2); m=1..inf.
%H A027999 Alois P. Heinz, <a href="/A027999/b027999.txt">Table of n, a(n) for n = 0..1000</a>
%H A027999 Vaclav Kotesovec, <a href="/A027999/a027999.jpg">Graph - the asymptotic ratio</a>
%F A027999 a(n) ~ 7^(1/8) / (2^(47/24) * 15^(1/8) * n^(5/8)) * exp(-2025 * Zeta(3)^3 / (98*Pi^8) - 135*(15/7)^(1/4) * Zeta(3)^2 / (28*Pi^5) * n^(1/4) - 3*sqrt(15/7) * Zeta(3) / (2*Pi^2) * sqrt(n) + 2*(7/15)^(1/4) * Pi/3 * n^(3/4)), where Zeta(3) = A002117. - _Vaclav Kotesovec_, May 27 2015
%p A027999 b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
%p A027999       add(binomial(binomial(i, 2), j)*b(n-i*j, i-1), j=0..n/i)))
%p A027999     end:
%p A027999 a:= n-> b(n$2):
%p A027999 seq(a(n), n=0..50);  # _Alois P. Heinz_, Aug 03 2013
%t A027999 b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[Binomial[i, 2], j]*b[n-i*j, i-1], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 50}] (* _Jean-François Alcover_, Oct 13 2014, after _Alois P. Heinz_ *)
%Y A027999 Cf. A027998, A028377, A258349, A258341, A258344.
%K A027999 nonn
%O A027999 0,4
%A A027999 _N. J. A. Sloane_