cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A028230 Bisection of A001353. Indices of square numbers which are also octagonal.

This page as a plain text file.
%I A028230 #102 May 22 2025 09:18:18
%S A028230 1,15,209,2911,40545,564719,7865521,109552575,1525870529,21252634831,
%T A028230 296011017105,4122901604639,57424611447841,799821658665135,
%U A028230 11140078609864049,155161278879431551,2161117825702177665,30100488280951055759,419245718107612602961,5839339565225625385695
%N A028230 Bisection of A001353. Indices of square numbers which are also octagonal.
%C A028230 Chebyshev S-sequence with Diophantine property.
%C A028230 4*b(n)^2 - 3*a(n)^2 = 1 with b(n) = A001570(n), n>=0.
%C A028230 y satisfying the Pellian x^2 - 3*y^2 = 1, for even x given by A094347(n). - _Lekraj Beedassy_, Jun 03 2004
%C A028230 a(n) = L(n,-14)*(-1)^n, where L is defined as in A108299; see also A001570 for L(n,+14). - _Reinhard Zumkeller_, Jun 01 2005
%C A028230 Product x*y, where the pair (x, y) solves for x^2 - 3y^2 = -2, i.e., a(n) = A001834(n)*A001835(n). - _Lekraj Beedassy_, Jul 13 2006
%C A028230 Numbers n such that RootMeanSquare(1,3,...,2*A001570(k)-1) = n. - _Ctibor O. Zizka_, Sep 04 2008
%C A028230 As n increases, this sequence is approximately geometric with common ratio r = lim(n -> oo, a(n)/a(n-1)) = (2 + sqrt(3))^2 = 7 + 4 * sqrt(3). - _Ant King_, Nov 15 2011
%D A028230 R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 329.
%D A028230 J. D. E. Konhauser et al., Which Way Did the Bicycle Go?, MAA 1996, p. 104.
%H A028230 Vincenzo Librandi, <a href="/A028230/b028230.txt">Table of n, a(n) for n = 1..890</a>
%H A028230 K. Andersen, L. Carbone, and D. Penta, <a href="https://pdfs.semanticscholar.org/8f0c/c3e68d388185129a56ed73b5d21224659300.pdf">Kac-Moody Fibonacci sequences, hyperbolic golden ratios, and real quadratic fields</a>, Journal of Number Theory and Combinatorics, Vol 2, No. 3 pp 245-278, 2011. See Section 9.
%H A028230 Alex Fink, Richard K. Guy, and Mark Krusemeyer, <a href="https://doi.org/10.11575/cdm.v3i2.61940">Partitions with parts occurring at most thrice</a>, Contributions to Discrete Mathematics, Vol 3, No 2 (2008), pp. 76-114. See Section 13.
%H A028230 T. N. E. Greville, <a href="http://dx.doi.org/10.1090/S0025-5718-1970-0258238-1">Table for third-degree spline interpolations with equally spaced arguments</a>, Math. Comp., 24 (1970), 179-183.
%H A028230 W. D. Hoskins, <a href="http://dx.doi.org/10.1090/S0025-5718-1971-0298873-9">Table for third-degree spline interpolation using equi-spaced knots</a>, Math. Comp., 25 (1971), 797-801.
%H A028230 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H A028230 E. Kilic, Y. T. Ulutas, and N. Omur, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Omur/omur6.html">A Formula for the Generating Functions of Powers of Horadam's Sequence with Two Additional Parameters</a>, J. Int. Seq. 14 (2011) #11.5.6, table 4, k=1, t=2.
%H A028230 Dino Lorenzini, and Z. Xiang, <a href="http://alpha.math.uga.edu/~lorenz/IntegralPoints.pdf">Integral points on variable separated curves</a>, Preprint 2016.
%H A028230 F. V. Waugh and M. W. Maxfield, <a href="http://www.jstor.org/stable/2688511">Side-and-diagonal numbers</a>, Math. Mag., 40 (1967), 74-83.
%H A028230 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/OctagonalSquareNumber.html">Octagonal Square Number.</a>
%H A028230 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (14,-1).
%H A028230 <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>
%F A028230 a(n) = 2*A001921(n)+1.
%F A028230 a(n) = 14*a(n-1) - a(n-2) for n>1.
%F A028230 a(n) = S(n, 14) + S(n-1, 14) = S(2*n, 4) with S(n, x) := U(n, x/2) Chebyshev's polynomials of the second kind. See A049310. S(-1, x) = 0, S(n, 14) = A007655(n+1) and S(n, 4) = A001353(n+1).
%F A028230 G.f.: x*(1+x)/(1-14*x+x^2).
%F A028230 a(n) = (ap^(2*n+1) - am^(2*n+1))/(ap - am) with ap := 2+sqrt(3) and am := 2-sqrt(3).
%F A028230 a(n+1) = Sum_{k=0..n} (-1)^k*binomial(2*n-k, k)*16^(n-k), n>=0.
%F A028230 a(n) = sqrt((4*A001570(n-1)^2 - 1)/3).
%F A028230 a(n) ~ 1/6*sqrt(3)*(2 + sqrt(3))^(2*n-1). - Joe Keane (jgk(AT)jgk.org), May 15 2002
%F A028230 4*a(n+1) = (A001834(n))^2 + 4*(A001835(n+1))^2 - (A001835(n))^2. E.g. 4*a(3) = 4*209 = 19^2 + 4*11^2 - 3^2 = (A001834(2))^2 + 4*(A001835(3))^2 - (A001835(2))^2. Generating floretion: 'i + 2'j + 3'k + i' + 2j' + 3k' + 4'ii' + 3'jj' + 4'kk' + 3'ij' + 3'ji' + 'jk' + 'kj' + 4e. - _Creighton Dement_, Dec 04 2004
%F A028230 a(n) = f(a(n-1),7) + f(a(n-2),7), where f(x,s) = s*x + sqrt((s^2-1)*x^2+1); f(0,s)=0. - _Marcos Carreira_, Dec 27 2006
%F A028230 From _Ant King_, Nov 15 2011: (Start)
%F A028230 a(n) = 1/6 * sqrt(3) * ( (tan(5*Pi/12)) ^ (2n-1) - (tan(Pi/12)) ^ (2n-1) ).
%F A028230 a(n) = floor (1/6 * sqrt(3) * (tan(5*Pi/12)) ^ (2n-1)). (End)
%F A028230 a(n) = A001353(n)^2-A001353(n-1)^2. - _Antonio Alberto Olivares_, Apr 06 2020
%F A028230 E.g.f.: 1 - exp(7*x)*(3*cosh(4*sqrt(3)*x) - 2*sqrt(3)*sinh(4*sqrt(3)*x))/3. - _Stefano Spezia_, Dec 12 2022
%F A028230 a(n) = sqrt(A036428(n)). - _Bernard Schott_, Dec 19 2022
%p A028230 seq(coeff(series((1+x)/(1-14*x+x^2), x, n+1), x, n), n = 0..30); # _G. C. Greubel_, Dec 06 2019
%t A028230 LinearRecurrence[{14, - 1}, {1, 15}, 17] (* _Ant King_, Nov 15 2011 *)
%t A028230 CoefficientList[Series[(1+x)/(1-14x+x^2), {x, 0, 30}], x] (* _Vincenzo Librandi_, Jun 17 2014 *)
%o A028230 (Sage) [(lucas_number2(n,14,1)-lucas_number2(n-1,14,1))/12 for n in range(1, 18)] # _Zerinvary Lajos_, Nov 10 2009
%o A028230 (PARI) Vec((1+x)/(1-14*x+x^2)+O(x^99)) \\ _Charles R Greathouse IV_, Jun 16 2014
%o A028230 (PARI) isok(n) = ispolygonal(n^2, 8); \\ _Michel Marcus_, Jul 09 2017
%o A028230 (Magma) I:=[1,15]; [n le 2 select I[n] else 14*Self(n-1) - Self(n-2): n in [1..30]]; // _G. C. Greubel_, Dec 06 2019
%o A028230 (GAP) a:=[1,15];; for n in [3..30] do a[n]:=14*a[n-1]-a[n-2]; od; a; # _G. C. Greubel_, Dec 06 2019
%Y A028230 Cf. A001353, A001570, A001834, A001835, A001921, A007655, A036428, A046184, A049310, A094347.
%Y A028230 Cf. A077416 with companion A077417.
%K A028230 nonn,easy
%O A028230 1,2
%A A028230 _N. J. A. Sloane_
%E A028230 Additional comments from _Wolfdieter Lang_, Nov 29 2002
%E A028230 Incorrect recurrence relation deleted by _Ant King_, Nov 15 2011
%E A028230 Minor edits by _Vaclav Kotesovec_, Jan 28 2015