This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A028248 #23 Oct 21 2023 09:53:24 %S A028248 1,0,1,1,7,21,126,638,4264,28983,226018,1872300,16940661,163461455, %T A028248 1688378030,18501971647,214749109038,2628228896227,33832314246857, %U A028248 456730760934125,6451399211318995,95135434800384144,1461771954435844296,23360315241127222572 %N A028248 Expansion of exp(exp(exp(x) - 1 - x) - 1). %C A028248 For p prime, a(p) == 1 (mod p) and a(p+1) == 1 (mod p). - _Mélika Tebni_, Mar 22 2022 %H A028248 Alois P. Heinz, <a href="/A028248/b028248.txt">Table of n, a(n) for n = 0..495</a> %F A028248 Row sums of A352607. - _Mélika Tebni_, Mar 22 2022 %e A028248 From _Mélika Tebni_, Mar 22 2022: (Start) %e A028248 a(11) = Sum_{k=0..5} (-1)^k*Bell(k)*A137375(11, k) = 1*(0) - 1*(-1) + 2*(1012) - 5*(-22935) + 15*(56980) - 52*(-17325) = 1872300. (End) %p A028248 h:= proc(n, m) option remember; %p A028248 `if`(n=0, 1, h(n-1, m+1)+m*h(n-1, m)) %p A028248 end: %p A028248 a:= proc(n) option remember; `if`(n=0, 1, add( %p A028248 a(n-j)*binomial(n-1, j-1)*h(j, -1), j=1..n)) %p A028248 end: %p A028248 seq(a(n), n=0..23); # _Alois P. Heinz_, Apr 14 2023 %t A028248 A352607[n_, k_] := BellB[k]*Sum[(-1)^(k + j)*Binomial[n, n - k + j]* StirlingS2[n - k + j, j], {j, 0, k}]; a[n_] := Sum[A352607[n, k], {k, 0, Floor[n/2]}]; Table[a[n], {n, 0, 23}] (* _Jean-François Alcover_, Oct 21 2023 *) %o A028248 (PARI) my(x='x+O('x^30)); Vec(serlaplace(exp(exp(exp(x) - 1 - x) - 1))) \\ _Michel Marcus_, Mar 22 2022 %Y A028248 Cf. A000110, A137375, A352607. %K A028248 nonn %O A028248 0,5 %A A028248 _N. J. A. Sloane_