This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A028323 #13 Jul 02 2025 16:01:56 %S A028323 1,1,6,1,7,1,19,8,1,27,9,1,65,36,10,1,101,46,11,1,231,147,57,12,1,378, %T A028323 204,69,13,1,840,582,273,82,14,1,1422,855,355,96,15,1,3102,2277,1210, %U A028323 451,111,16,1,5379,3487,1661,562,127,17,1,11583,8866,5148,2223,689,144,18,1 %N A028323 Elements to the right of the central elements of the 5-Pascal triangle A028313. %H A028323 G. C. Greubel, <a href="/A028323/b028323.txt">Rows n = 0..100 of the irregular triangle, flattened</a> %F A028323 From _G. C. Greubel_, Jan 05 2024: (Start) %F A028323 a(n) = A028313(n, k), for 1 + floor(n/2) <= k <= n, n >= 0. %F A028323 T(n, k) = binomial(n+1, k + floor((n+1)/2) + 1) + 3*binomial(n-1, k + floor((n+1)/2)) -3*[n=0], for 0 <= k <= floor(n/2), n >= 0. (End) %e A028323 This sequence represents the following portion of A028313(n,k), with x being the elements of A028313(2*n,n): %e A028323 x, %e A028323 ., 1, %e A028323 ., x, 1, %e A028323 ., ., 6, 1, %e A028323 ., ., x, 7, 1, %e A028323 ., ., .., 19, 8, 1, %e A028323 ., ., .., x, 27, 9, 1, %e A028323 ., .., .., .., 65, 36, 10, 1, %e A028323 ., .., .., ..., x, 101, 46, 11, 1, %e A028323 ., .., .., ..., ..., 231, 147, 57, 12, 1. %e A028323 As an irregular triangle this sequence begins as: %e A028323 1; %e A028323 1; %e A028323 6, 1; %e A028323 7, 1; %e A028323 19, 8, 1; %e A028323 27, 9, 1; %e A028323 65, 36, 10, 1; %e A028323 101, 46, 11, 1; %e A028323 231, 147, 57, 12, 1; %e A028323 378, 204, 69, 13, 1; %e A028323 840, 582, 273, 82, 14, 1; %e A028323 1422, 855, 355, 96, 15, 1; %e A028323 3102, 2277, 1210, 451, 111, 16, 1; %t A028323 T[n_, k_]:= Binomial[n+1, k +Floor[(n+1)/2] +1] + 3*Binomial[n-1, k+ Floor[(n+1)/2]] -3*Boole[n==0]; %t A028323 Table[T[n,k], {n,0,16}, {k,0,Floor[n/2]}]//Flatten (* _G. C. Greubel_, Jan 05 2024 *) %o A028323 (Magma) %o A028323 A028323:= func< n,k | n eq 0 select 1 else Binomial(n+1, k + Floor((n+1)/2) + 1) + 3*Binomial(n-1, k + Floor((n+1)/2)) >; %o A028323 [A028323(n,k): k in [0..Floor(n/2)], n in [0..16]]; // _G. C. Greubel_, Jan 05 2024 %o A028323 (SageMath) %o A028323 def A028323(n,k): return binomial(n+1, k+1+(n+1)//2) + 3*binomial(n-1, k+((n+1)//2)) - 3*int(n==0) %o A028323 flatten([[A028323(n,k) for k in range(1+(n//2))] for n in range(17)]) # _G. C. Greubel_, Jan 05 2024 %Y A028323 Cf. A028313. %K A028323 nonn,easy,tabf %O A028323 0,3 %A A028323 _Mohammad K. Azarian_ %E A028323 More terms from _James Sellers_