This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A028324 #13 Jul 02 2025 16:01:56 %S A028324 6,7,19,8,27,9,65,36,10,101,46,11,231,147,57,12,378,204,69,13,840,582, %T A028324 273,82,14,1422,855,355,96,15,3102,2277,1210,451,111,16,5379,3487, %U A028324 1661,562,127,17,11583,8866,5148,2223,689,144,18,20449,14014,7371,2912,833 %N A028324 Elements to the right of the central elements of the 5-Pascal triangle A028313 that are not 1. %H A028324 G. C. Greubel, <a href="/A028324/b028324.txt">Rows n = 0..100 of the irregular triangle, flattened</a> %F A028324 T(n, k) = binomial(n+3, k + 2 + floor((n+1)/2)) + 3*binomial(n+1, k + 1 + floor((n+1)/2)), for 0 <= k <= floor(n/2), n >= 0. - _G. C. Greubel_, Jan 06 2024 %e A028324 This sequence represents the following portion of A028313(n,k), with x being the elements of A028313(2*n,n): %e A028324 x; %e A028324 ., .; %e A028324 ., x, .; %e A028324 ., ., 6, .; %e A028324 ., ., x, 7, .; %e A028324 ., ., ., 19, 8, .; %e A028324 ., ., ., x, 27, 9, .; %e A028324 ., ., ., ., 65, 36, 10, .; %e A028324 ., ., ., ., x, 101, 46, 11, .; %e A028324 ., ., ., ., ., 231, 147, 57, 12, .; %e A028324 ., ., ., ., ., x, 378, 204, 69, 13, .; %e A028324 As an irregular triangle this sequence begins as: %e A028324 6; %e A028324 7; %e A028324 19, 8; %e A028324 27, 9; %e A028324 65, 36, 10; %e A028324 101, 46, 11; %e A028324 231, 147, 57, 12; %e A028324 378, 204, 69, 13; %e A028324 840, 582, 273, 82, 14; %e A028324 1422, 855, 355, 96, 15; %e A028324 3102, 2277, 1210, 451, 111, 16; %e A028324 5379, 3487, 1661, 562, 127, 17; %e A028324 11583, 8866, 5148, 2223, 689, 144, 18; %t A028324 T[n_, k_]:= Binomial[n+3, k+2+Floor[(n+1)/2]] + 3*Binomial[n+1, k+1 + Floor[(n+1)/2]]; %t A028324 Table[T[n,k], {n,0,16}, {k,0,Floor[n/2]}]//Flatten (* _G. C. Greubel_, Jan 06 2024 *) %o A028324 (Magma) %o A028324 A028324:= func< n,k | Binomial(n+3, k+2+Floor((n+1)/2)) + 3*Binomial(n+1, k+1+Floor((n+1)/2)) >; %o A028324 [A028324(n,k): k in [0..Floor(n/2)], n in [0..16]]; // _G. C. Greubel_, Jan 06 2024 %o A028324 (SageMath) %o A028324 def A028324(n,k): return binomial(n+3, k+2+(n+1)//2) + 3*binomial(n+1, k+1+((n+1)//2)) %o A028324 flatten([[A028324(n,k) for k in range(1+(n//2))] for n in range(17)]) # _G. C. Greubel_, Jan 06 2024 %Y A028324 Cf. A028313, A028323. %K A028324 nonn,tabf %O A028324 0,1 %A A028324 _Mohammad K. Azarian_ %E A028324 More terms from _James Sellers_