This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A028331 #13 Jul 02 2025 16:01:56 %S A028331 6,8,20,10,30,12,70,42,14,112,56,16,252,168,72,18,420,240,90,20,924, %T A028331 660,330,110,22,1584,990,440,132,24,3432,2574,1430,572,156,26,6006, %U A028331 4004,2002,728,182,28,12870,10010,6006,2730,910,210,30,22880,16016 %N A028331 Elements to the right of the central elements of the even-Pascal triangle A028326 that are not 2. %H A028331 G. C. Greubel, <a href="/A028331/b028331.txt">Rows n = 0..100 of the irregular triangle, flattened</a> %F A028331 From _G. C. Greubel_, Jul 14 2024: (Start) %F A028331 T(n, k) = 2*binomial(n+3, k+2 + floor((n+1)/2)). %F A028331 Sum_{k=0..floor(n/2)} T(n, k) = A272514(n+3). %F A028331 Sum_{k=0..n} (-1)^k*T(2*n, k) = 2*A286033(n+2). %F A028331 Sum_{k=0..n} (-1)^k*T(2*n+1, k) = binomial(2*n+4, n+2) + 2*(-1)^n. %F A028331 (End) %e A028331 This sequence represents the following portion of A028330(n,k), with x being the elements of A028329(n): %e A028331 x; %e A028331 ., .; %e A028331 ., x, .; %e A028331 ., ., 6, .; %e A028331 ., ., x, 8, .; %e A028331 ., ., ., 20, 10, .; %e A028331 ., ., ., x, 30, 12, .; %e A028331 ., ., ., ., 70, 42, 14, .; %e A028331 ., ., ., ., x, 112, 56, 16, .; %e A028331 ., ., ., ., ., 252, 168, 72, 18, .; %e A028331 ., ., ., ., ., x, 420, 240, 90, 20, .; %e A028331 ., ., ., ., ., ., 924, 660, 330, 110, 22, .; %e A028331 ., ., ., ., ., ., x, 1584, 990, 440, 132, 24, .; %e A028331 As an irregular triangle: %e A028331 6; %e A028331 8; %e A028331 20, 10; %e A028331 30, 12; %e A028331 70, 42, 14; %e A028331 112, 56, 16; %e A028331 252, 168, 72, 18; %e A028331 420, 240, 90, 20; %e A028331 924, 660, 330, 110, 22; %t A028331 Table[2*Binomial[n+3, k+2 +Floor[(n+1)/2]], {n,0,12}, {k,0,Floor[n/2] }]//Flatten (* _G. C. Greubel_, Jul 14 2024 *) %o A028331 (Magma) %o A028331 [2*Binomial(n+3,k): k in [Floor((n+5)/2)..n+2], n in [0..12]]; // _G. C. Greubel_, Jul 14 2024 %o A028331 (SageMath) %o A028331 def A028326(n,k): return 2*binomial(n, k) %o A028331 flatten([[A028326(n+1,k) for k in range(((n+3)//2), n+1)] for n in range(21)]) # _G. C. Greubel_, Jul 14 2024 %Y A028331 Cf. A028326, A028327, A028328, A028329, A028330, A028332. %Y A028331 Cf. A272514, A286033. %K A028331 nonn,tabf %O A028331 0,1 %A A028331 _Mohammad K. Azarian_ %E A028331 More terms from _James Sellers_