cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A028355 How the astronomical clock ("Orloj") in Prague would strike 1,2,3,...,24,25,.. (digits follow 12343212343... (A028356), n-th group adds to n).

This page as a plain text file.
%I A028355 #33 Apr 19 2024 01:59:24
%S A028355 1,2,3,4,32,123,43,2123,432,1234,32123,43212,34321,23432,123432,
%T A028355 1234321,2343212,3432123,4321234,32123432,123432123,43212343,
%U A028355 2123432123,432123432,1234321234,32123432123,43212343212
%N A028355 How the astronomical clock ("Orloj") in Prague would strike 1,2,3,...,24,25,.. (digits follow 12343212343... (A028356), n-th group adds to n).
%C A028355 This remarkable sequence is really a sequence of lists rather than numbers.
%D A028355 Zdenek Horsky, "Prazsky Orloj" ["The Astronomical Clock of Prague", in Czech], Panorama, Prague, 1988, pp. 76-78.
%H A028355 Seiichi Manyama, <a href="/A028355/b028355.txt">Table of n, a(n) for n = 1..2500</a>
%H A028355 Michal Krížek, Alena Šolcová and Lawrence Somer, <a href="http://dml.cz/dmlcz/119666">Construction of Šindel sequences</a>, Comment. Math. Univ. Carolin., 48 (2007), 373-388.
%H A028355 N. J. A. Sloane, <a href="http://neilsloane.com/doc/sg.txt">My favorite integer sequences</a>, in Sequences and their Applications (Proceedings of SETA '98).
%F A028355 Conjectures from _Chai Wah Wu_, Apr 18 2024: (Start)
%F A028355 a(n) = 1000001*a(n-15) - 1000000*a(n-30) for n > 30.
%F A028355 G.f.: x*(100000*x^28 + 200000*x^27 + 300000*x^26 + 400000*x^25 + 320000*x^24 + 123000*x^23 + 430000*x^22 + 212300*x^21 + 432000*x^20 + 123400*x^19 + 321230*x^18 + 432120*x^17 + 343210*x^16 + 234320*x^15 + 123432*x^14 + 23432*x^13 + 34321*x^12 + 43212*x^11 + 32123*x^10 + 1234*x^9 + 432*x^8 + 2123*x^7 + 43*x^6 + 123*x^5 + 32*x^4 + 4*x^3 + 3*x^2 + 2*x + 1)/(1000000*x^30 - 1000001*x^15 + 1). (End)
%e A028355 1, 2, 3, 4, 3+2=5, 1+2+3=6, 4+3=7, 2+1+2+3=8, 4+3+2=9, 1+2+3+4=10, 3+2+1+2+3=11, 4+3+2+1+2=12, 3+4+3+2+1=13, 2+3+4+3+2=14, 1+2+3+4+3+2=15, ...
%t A028355 s[i_] := {1, 2, 3, 4, 3, 2}[[Mod[i, 6, 1]]];
%t A028355 m[k_] := If[k == 1, 0, For[m0 = 1, True, m0++, If[k (k - 1)/2 == Sum[s[i], {i, 1, m0}], Return[m0]]]];
%t A028355 n[k_] := For[n0 = m[k] + 1, True, n0++, If[Sum[s[i], {i, m[k] + 1, n0}] == k, Return[n0]]];
%t A028355 a[k_] := a[k] = Table[s[i], {i, m[k] + 1, n[k]}] // FromDigits; Array[a, 27] (* _Jean-François Alcover_, Mar 14 2016 *)
%Y A028355 Cf. A028354, A028356, A068962, A118382, A118383.
%K A028355 nonn,nice,base
%O A028355 1,2
%A A028355 _N. J. A. Sloane_, _J. H. Conway_