This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A028450 #24 Jul 08 2019 18:52:20 %S A028450 1,13,1681,112485,9049169,692276437,53786626921,4161756233501, %T A028450 322462050747008,24976513162427653,1934824269280528177, %U A028450 149878484960033943221,11610280860482785441201,899384302182455890904869,69670430204782040731619473,5396990358379369075151309301 %N A028450 Number of perfect matchings in graph P_{2} X P_{6} X P_{n}. %C A028450 This sequence satisfies a recurrence relation of order 213. - _Sergey Perepechko_, Jul 07 2019 %D A028450 Per Hakan Lundow, "Computation of matching polynomials and the number of 1-factors in polygraphs", Research report, No 12, 1996, Department of Math., Umea University, Sweden. %H A028450 Alois P. Heinz, <a href="/A028450/b028450.txt">Table of n, a(n) for n = 0..200</a> %H A028450 Per Hakan Lundow, <a href="http://www.theophys.kth.se/~phl/Text/1factors2.ps.gz">Enumeration of matchings in polygraphs</a>, 1998. %H A028450 A. M. Karavaev and S. N. Perepechko, <a href="http://dx.doi.org/10.13140/RG.2.2.13054.13126">Dimer problem on two-layer rectangular grid graph</a>, (in Russian) CMMASS'2013 slides %H A028450 Sergey Perepechko, <a href="/A028450/a028450.pdf">Generating function</a> in Maple notation %H A028450 Sergey Perepechko, <a href="/A028450/a028450_1.txt">Generating function</a> in text format %Y A028450 Column k=6 of A181206. %K A028450 nonn %O A028450 0,2 %A A028450 _Per H. Lundow_