This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A028480 #16 Apr 17 2020 23:04:48 %S A028480 1,76,11989,2091817,372713728,66750320449,11970180565381, %T A028480 2147314732677364,385238046548443177,69115057977256578649, %U A028480 12399917664600455876068,2224670061782262303745381,399128369515444836686385361,71607684753022827432994707712 %N A028480 Number of perfect matchings in graph C_{9} X P_{2n}. %D A028480 Per Hakan Lundow, "Computation of matching polynomials and the number of 1-factors in polygraphs", Research report, No 12, 1996, Department of Math., Umea University, Sweden. %H A028480 Alois P. Heinz, <a href="/A028480/b028480.txt">Table of n, a(n) for n = 0..400</a> %H A028480 Per Hakan Lundow, <a href="http://www.theophys.kth.se/~phl/Text/1factors2.ps.gz">Enumeration of matchings in polygraphs</a>, 1998. %F A028480 G.f.: (x^15 -189*x^14+9585*x^13 -194987*x^12 +1937034*x^11 -10357902*x^10 +31195513*x^9 -53951967*x^8 +53951967*x^7 -31195513*x^6 +10357902*x^5 -1937034*x^4 +194987*x^3 -9585*x^2 +189*x -1) / ( -x^16 +265*x^15 -17736*x^14 +457655*x^13 -5699687*x^12 +38357160*x^11 -146975161*x^10 +327381265*x^9 -427427424*x^8 +327381265*x^7 -146975161*x^6 +38357160*x^5 -5699687*x^4 +457655*x^3 -17736*x^2 +265*x -1). - _Alois P. Heinz_, Dec 10 2013 %F A028480 a(n) = 2^n * sqrt(Resultant(U_{2*n}(x/2), T_{9}(i*x/2))), where T_n(x) is a Chebyshev polynomial of the first kind, U_n(x) is a Chebyshev polynomial of the second kind and i = sqrt(-1). - _Seiichi Manyama_, Apr 17 2020 %o A028480 (PARI) {a(n) = sqrtint(4^n*polresultant(polchebyshev(2*n, 2, x/2), polchebyshev(9, 1, I*x/2)))} \\ _Seiichi Manyama_, Apr 17 2020 %K A028480 nonn,easy %O A028480 0,2 %A A028480 _Per H. Lundow_