This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A028484 #22 Apr 17 2020 23:05:59 %S A028484 1,521,783511,1380947751,2539295042077,4737855988840963, %T A028484 8887976555024756736,16707831453322853779391, %U A028484 31432720082490305392103161,59153025307098251197953889723,111332882561747103126702691033059,209551070271391563571916783497390709 %N A028484 Number of perfect matchings in graph C_{13} X P_{2n}. %D A028484 Per Hakan Lundow, "Computation of matching polynomials and the number of 1-factors in polygraphs", Research report, No 12, 1996, Department of Math., Umea University, Sweden. %H A028484 Sergey Perepechko, <a href="/A028484/b028484.txt">Table of n, a(n) for n = 0..300</a> %H A028484 A. M. Karavaev, S. N. Perepechko, <a href="http://mi.mathnet.ru/eng/mm3533">Dimer problem on cylinders: recurrences and generating functions</a>, (in Russian), Matematicheskoe Modelirovanie, 2014, V.26, No.11, pp.18-22. %H A028484 Per Hakan Lundow, <a href="http://www.theophys.kth.se/~phl/Text/1factors2.ps.gz">Enumeration of matchings in polygraphs</a>, 1998. %H A028484 Sergey Perepechko, <a href="/A028484/a028484.pdf">Generating function for A028484</a> %F A028484 G.f.: see links. %F A028484 a(n) = 2^n * sqrt(Resultant(U_{2*n}(x/2), T_{13}(i*x/2))), where T_n(x) is a Chebyshev polynomial of the first kind, U_n(x) is a Chebyshev polynomial of the second kind and i = sqrt(-1). - _Seiichi Manyama_, Apr 17 2020 %o A028484 (PARI) {a(n) = sqrtint(4^n*polresultant(polchebyshev(2*n, 2, x/2), polchebyshev(13, 1, I*x/2)))} \\ _Seiichi Manyama_, Apr 17 2020 %K A028484 nonn %O A028484 0,2 %A A028484 _Per H. Lundow_ %E A028484 a(10)-a(11) from _Alois P. Heinz_, Dec 10 2013