This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A028507 #33 Jul 02 2025 16:01:56 %S A028507 1,1,1,2,2,3,1,5,2,23,2,2,1,1,55,1,4,3,1,1,15,1,9,2,5,7,1,1,4,8,1,11, %T A028507 1,20,2,1,10,1,4,1,1,1,1,1,37,4,55,1,1,49,1,1,1,4,1,3,2,3,3,1,5,16,2, %U A028507 3,1,1,1,1,1,5,2,1,2,8,7,1,1,2,1,1,3,3,1,1,1,1,5,4,2,2,2,16,8,10,1,25,2,1 %N A028507 Continued fraction expansion for log_2(3). %H A028507 T. D. Noe, <a href="/A028507/b028507.txt">Table of n, a(n) for n = 0..9999</a> %H A028507 E. G. Dunne, <a href="/DUNNE/TEMPERAMENT2.html">Pianos and Continued Fractions</a> %H A028507 Terence Jackson and Keith Matthews, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL5/Jackson/matthews3.html">"On Shanks' Algorithm for Computing the Continued Fraction of log_b a" </a>, Journal of Integer Sequences, Vol. 5 (2002), Article 02.2.7 %H A028507 T. H. Jackson & K. R. Matthews, <a href="http://www.numbertheory.org/pdfs/1000.pdf">The 1000 partial quotients of log_2(3)</a> %H A028507 Dave Rusin, <a href="http://www.math.niu.edu/~rusin/papers/uses-math/music/12">Why 12 tones per octave?</a> [Broken link] %H A028507 Dave Rusin, <a href="/A028507/a028507.txt">Why 12 tones per octave?</a> [Cached copy] %e A028507 log_2(3) = 1.5849625007211561814537389439... %p A028507 Digits := 200: convert(evalf( log(3)/log(2) ),confrac); %t A028507 ContinuedFraction[Log[2,3],120] (* _Harvey P. Dale_, Oct 24 2011 *) %Y A028507 Cf. A005663, A005664, A020857 (decimal expansion). %K A028507 nonn,cofr,nice,easy %O A028507 0,4 %A A028507 Tony Smith (tsmith(AT)innerx.net) %E A028507 More terms from _James Sellers_, Sep 16 2000 %E A028507 Offset changed by _Andrew Howroyd_, Aug 07 2024