This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A028567 #23 Jan 25 2022 08:30:48 %S A028567 0,1,3,66,88,91,173,216,225,284,294,696,707,924,2235,2828,6996,9394, %T A028567 28314,30031,57489,69996,93844,188583,228175,241097,283778,298144, %U A028567 597883,699996,896478,1934063,2281817,6999996,7243225,17646619,17869169,19782199,23352327 %N A028567 Numbers k such that k*(k+8) is a palindrome. %C A028567 For i >= 0, 69^i6 is a term with corresponding palindrome 48(99)^{2*i}84, where ^ is repeated concatenation. - _Michael S. Branicky_, Jan 24 2022 %H A028567 Michael S. Branicky, <a href="/A028567/b028567.txt">Table of n, a(n) for n = 1..58</a> %H A028567 Patrick De Geest, <a href="http://www.worldofnumbers.com/consemor.htm">Palindromic Quasipronics of the form n(n+x)</a> %H A028567 Erich Friedman, <a href="https://erich-friedman.github.io/numbers.html">What's Special About This Number?</a> (See entries 696, 2235, 2828, 6996, 9394.) %t A028567 Select[Range[0,8*10^6],PalindromeQ[#(#+8)]&] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, May 28 2017 *) %o A028567 (Python) %o A028567 from itertools import count, islice %o A028567 def ispal(n): s = str(n); return s == s[::-1] %o A028567 def agen(): %o A028567 for k in count(0): %o A028567 if ispal(k*(k+8)): %o A028567 yield k %o A028567 print(list(islice(agen(), 35))) # _Michael S. Branicky_, Jan 24 2022 %K A028567 nonn,base %O A028567 1,3 %A A028567 _Patrick De Geest_ %E A028567 a(36) and beyond from _Michael S. Branicky_, Jan 24 2022