This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A028570 #27 Sep 08 2022 08:44:50 %S A028570 0,2,12,44,137,157,167,248,258,1639,1664,1694,5392,15904,16997,160187, %T A028570 487619,1547147,14674184,14790532,15019614,15336644,25234083,26132578, %U A028570 26211438,26216753,48675319,49407017,52030352,54072524,151698472,164399727,497665874 %N A028570 Numbers k such that k*(k + 9) is a palindrome. %H A028570 Michael S. Branicky, <a href="/A028570/b028570.txt">Table of n, a(n) for n = 1..42</a> %H A028570 Patrick De Geest, <a href="http://www.worldofnumbers.com/consemor.htm">Palindromic Quasipronics of the form n(n+x)</a> %H A028570 Erich Friedman, <a href="https://erich-friedman.github.io/numbers.html">What's Special About This Number?</a> (See entries 258, 1664.) %t A028570 Select[Range[0, 9999], PalindromeQ[#^2 + 9#] &] (* _Alonso del Arte_, Nov 10 2019 *) %o A028570 (Scala) def palQ(n: Int, b: Int = 10): Boolean = n - Integer.parseInt(n.toString.reverse) == 0 %o A028570 (0 to 9999).filter((n: Int) => palQ(n * n + 9 * n)) // _Alonso del Arte_, Nov 10 2019 %o A028570 (Magma) f:=func<n| Intseq(n) eq Reverse(Intseq(n))>; [k:k in [0..2*10^7]| f(k*(k+9))]; // _Marius A. Burtea_, Nov 11 2019 %o A028570 (Python) %o A028570 from itertools import count, islice %o A028570 def ispal(n): s = str(n); return s == s[::-1] %o A028570 def agen(): %o A028570 for k in count(0): %o A028570 if ispal(k*(k+9)): %o A028570 yield k %o A028570 print(list(islice(agen(), 18))) # _Michael S. Branicky_, Jan 25 2022 %Y A028570 Cf. A028569, A028571. %K A028570 nonn,base %O A028570 1,2 %A A028570 _Patrick De Geest_ %E A028570 a(27) and beyond from _Michael S. Branicky_, Jan 25 2022