A028666 a(n) = order of the orthogonal group O_n(2) if n is odd or O^(+)_n(2) if n is even.
1, 12, 2880, 11612160, 758041804800, 794088208701849600, 13319336815141167562752000, 3575164027575627746190393606144000, 15354978274323252140217954794120612413440000, 1055182047088717407398960909148529544369642384916480000, 1160183823755957350394353874696058298158177597536388268425216000000
Offset: 0
Keywords
References
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xii (but beware typos!).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..39
Crossrefs
Programs
-
Maple
f:=proc(n,eps) local m,d; if n mod 2 = 0 then m:=n/2; d:=gcd(4,2^m-eps); 2^(m*(m-1))*mul( 4^i-1, i=1..m)*(2^m-eps)/d; else m:=(n-1)/2; 2^(m^2)*mul( 4^i-1, i=1..m); fi; end; [seq(f(n,+1),n=0..20)]
-
Mathematica
FoldList[ #1*4^#2 (4^#2-1)&, 1, Range[ 20 ] ] a[n_] := 4^n * Product[4^n - 4^k, {k, 0, n-1}]; Array[a, 10, 0] (* Amiram Eldar, Jul 14 2025 *)
-
PARI
a(n) = 4^n * prod(k = 0, n-1, 4^n - 4^k); \\ Amiram Eldar, Jul 14 2025
Formula
a(n) = 4^n * Product_{k=0..n-1} (4^n - 4^k).
a(n) ~ c * 4^(n^2+n), where c = A100221. - Amiram Eldar, Jul 14 2025
Extensions
Entry revised by N. J. A. Sloane, Dec 30 2008
Duplicate term 1 removed by Amiram Eldar, Jul 14 2025
Comments