cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A028668 Pseudo Galois numbers for d=6.

Original entry on oeis.org

1, 30, 37800, 1755432000, 2946176634240000, 178121125423535616000000, 387722609071165087097978880000000, 30383449623465746081582327522446540800000000, 85714999722921366207156144059911618537426255872000000000, 8705210793883473550569112250184122162504600827770940780707840000000000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    FoldList[ #1*6^#2 (6^#2-1)&, 1, Range[ 20 ] ]
    a[n_] := 6^n * Product[6^n - 6^k, {k, 0, n-1}]; Array[a, 10, 0] (* Amiram Eldar, Jul 13 2025 *)
  • PARI
    a(n) = 6^n * prod(k = 0, n-1, 6^n - 6^k); \\ Amiram Eldar, Jul 13 2025

Formula

a(n) = 6^n * Product_{k=0..n-1} (6^n - 6^k).
a(n) ~ c * 6^(n^2+n), where c = A132034. - Amiram Eldar, Jul 13 2025

A028671 Pseudo Galois numbers for d=9; order of group AGL(n,3^2).

Original entry on oeis.org

1, 72, 466560, 247608990720, 10657130578027315200, 37158487365982254056334950400, 10494634615565778355427184150449750016000, 240083527795435700509596514439839216948307004751872000, 444879613680905841995130298273091805272041653799250478127267184640000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    FoldList[ #1*9^#2 (9^#2-1)&, 1, Range[ 20 ] ]
    a[n_] := 9^n * Product[9^n - 9^k, {k, 0, n-1}]; Array[a, 9, 0] (* Amiram Eldar, Jul 13 2025 *)
  • PARI
    a(n) = 9^n * prod(k = 0, n-1, 9^n - 9^k); \\ Amiram Eldar, Jul 13 2025

Formula

a(n) = 9^n * Product_{k=0..n-1} (9^n - 9^k).
a(n) ~ c * 9^(n^2+n), where c = A132037. - Amiram Eldar, Jul 13 2025

A028672 Pseudo Galois numbers for d=10.

Original entry on oeis.org

1, 90, 891000, 890109000000, 89001998910000000000, 890011088900109000000000000000, 890010198889020099891000000000000000000000, 89001010988800021098899001090000000000000000000000000000, 890010100987899112108987901010099891000000000000000000000000000000000000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    FoldList[ #1*10^#2 (10^#2-1)&, 1, Range[ 20 ] ]
    a[n_] := 10^n * Product[10^n - 10^k, {k, 0, n-1}]; Array[a, 9, 0] (* Amiram Eldar, Jul 13 2025 *)
  • PARI
    a(n) = 10^n * prod(k = 0, n-1, 10^n - 10^k); \\ Amiram Eldar, Jul 13 2025

Formula

a(n) = 10^n * Product_{k=0..n-1} (10^n - 10^k).
a(n) ~ c * 10^(n^2+n), where c = A132038. - Amiram Eldar, Jul 13 2025

A028674 Pseudo Galois numbers for d=12.

Original entry on oeis.org

1, 132, 2718144, 8111637540864, 3487687464241924669440, 215947547174699123561887936020480, 1925409377348197859035291587889453626619330560, 2472068582401983350289346536053061182913649906696710374031360
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    FoldList[ #1*12^#2 (12^#2-1)&, 1, Range[ 20 ] ]
    a[n_] := 12^n * Product[12^n - 12^k, {k, 0, n-1}]; Array[a, 8, 0] (* Amiram Eldar, Jul 13 2025 *)
  • PARI
    a(n) = 12^n * prod(k = 0, n-1, 12^n - 12^k); \\ Amiram Eldar, Jul 13 2025

Formula

a(n) = 12^n * Product_{k=0..n-1} (12^n - 12^k).
a(n) ~ c * 12^(n^2+n), where c = A132268. - Amiram Eldar, Jul 13 2025

A028676 Pseudo Galois numbers for d=14.

Original entry on oeis.org

1, 182, 6956040, 52356666223680, 77265383687862143155200, 22349330345043106156640015717990400, 1267070807948330368930015476714098504169160704000, 14079699332820783408928640305225880493640569562642424631656448000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    FoldList[ #1*14^#2 (14^#2-1)&, 1, Range[ 20 ] ]
    a[n_] := 14^n * Product[14^n - 14^k, {k, 0, n-1}]; Array[a, 8, 0] (* Amiram Eldar, Jul 13 2025 *)
  • PARI
    a(n) = 14^n * prod(k = 0, n-1, 14^n - 14^k); \\ Amiram Eldar, Jul 13 2025

Formula

a(n) = 14^n * Product_{k=0..n-1} (14^n - 14^k).
a(n) ~ c * 14^(n^2+n), where c = Product_{k>=1} (1 - 1/14^k) = 0.923471256585... . - Amiram Eldar, Jul 13 2025

A028677 Pseudo Galois numbers for d=15.

Original entry on oeis.org

1, 210, 10584000, 120522654000000, 308880278577360000000000, 178115698742031918598500000000000000, 23109857603759312583902403410250000000000000000000, 674644359535320835775869151538023145415195312500000000000000000000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    FoldList[ #1*15^#2 (15^#2-1)&, 1, Range[ 20 ] ]
    a[n_] := 15^n * Product[15^n - 15^k, {k, 0, n-1}]; Array[a, 8, 0] (* Amiram Eldar, Jul 13 2025 *)
  • PARI
    a(n) = 15^n * prod(k = 0, n-1, 15^n - 15^k); \\ Amiram Eldar, Jul 13 2025

Formula

a(n) = 15^n * Product_{k=0..n-1} (15^n - 15^k).
a(n) ~ c * 15^(n^2+n), where c = Product_{k>=1} (1 - 1/15^k) = 0.928890211614... . - Amiram Eldar, Jul 13 2025

A028678 Pseudo Galois numbers for d=16; order of group AGL(n,2^4).

Original entry on oeis.org

1, 240, 15667200, 262787825664000, 1128647894950886768640000, 1240960300690310266540982796288000000, 349299250915794737048265419604885133559070720000000, 25169663526478361283103094344080671195753840937477514828185600000000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    FoldList[ #1*16^#2 (16^#2-1)&, 1, Range[ 20 ] ]
    a[n_] := 16^n * Product[16^n - 16^k, {k, 0, n-1}]; Array[a, 8, 0] (* Amiram Eldar, Jul 13 2025 *)
  • PARI
    a(n) = 16^n * prod(k = 0, n-1, 16^n - 16^k); \\ Amiram Eldar, Jul 13 2025

Formula

a(n) = 16^n * Product_{k=0..n-1} (16^n - 16^k).
a(n) ~ c * 16^(n^2+n), where c = Product_{k>=1} (1 - 1/16^k) = 0.933594707399... . - Amiram Eldar, Jul 13 2025

A028680 Pseudo Galois numbers for d=18.

Original entry on oeis.org

1, 306, 32023512, 1089004102288704, 12000667955029147591142400, 42847968954950283704312619696092774400, 49567873660106321460531697392097352394556112948428800, 18578701620081137383821309406407591330835087924034550043168000809369600
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    FoldList[ #1*18^#2 (18^#2-1)&, 1, Range[ 20 ] ]
    a[n_] := 18^n * Product[18^n - 18^k, {k, 0, n-1}]; Array[a, 8, 0] (* Amiram Eldar, Jul 14 2025 *)
  • PARI
    a(n) = 18^n * prod(k = 0, n-1, 18^n - 18^k); \\ Amiram Eldar, Jul 14 2025

Formula

a(n) = 18^n * Product_{k=0..n-1} (18^n - 18^k).
a(n) ~ c * 18^(n^2+n), where c = Product_{k>=1} (1 - 1/18^k) = 0.941358555546... . - Amiram Eldar, Jul 14 2025

A028682 Pseudo Galois numbers for d=20.

Original entry on oeis.org

1, 380, 60648000, 3880986816000000, 99352641531709440000000000, 1017370731356251764129792000000000000000, 4167150450523480419075515127693312000000000000000000000, 6827459292803717741943269048796063017352560640000000000000000000000000000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    FoldList[ #1*20^#2 (20^#2-1)&, 1, Range[ 20 ] ]
    a[n_] := 20^n * Product[20^n - 20^k, {k, 0, n-1}]; Array[a, 8, 0] (* Amiram Eldar, Jul 14 2025 *)
  • PARI
    a(n) = 20^n * prod(k = 0, n-1, 20^n - 20^k); \\ Amiram Eldar, Jul 14 2025

Formula

a(n) = 20^n * Product_{k=0..n-1} (20^n - 20^k).
a(n) ~ c * 20^(n^2+n), where c = Product_{k>=1} (1 - 1/20^k) = 0.947500313281... . - Amiram Eldar, Jul 14 2025

A028683 Pseudo Galois numbers for d=21.

Original entry on oeis.org

1, 420, 81496800, 6988909668048000, 264339188251171547754240000, 4409145118315866486641282521305984000000, 32432910584848683243891703579686352553931989191680000000, 105209765057463921593261518265177017436422522866428383386348592435200000000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    FoldList[ #1*21^#2 (21^#2-1)&, 1, Range[ 20 ] ]
    a[n_] := 21^n * Product[21^n - 21^k, {k, 0, n-1}]; Array[a, 8, 0] (* Amiram Eldar, Jul 14 2025 *)
  • PARI
    a(n) = 21^n * prod(k = 0, n-1, 21^n - 21^k); \\ Amiram Eldar, Jul 14 2025

Formula

a(n) = 21^n * Product_{k=0..n-1} (21^n - 21^k).
a(n) ~ c * 21^(n^2+n), where c = Product_{k>=1} (1 - 1/21^k) = 0.950113624091... . - Amiram Eldar, Jul 14 2025
Showing 1-10 of 13 results. Next