This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A028725 #19 Apr 09 2022 01:27:25 %S A028725 0,0,0,0,0,0,1,3,12,24,60,100,200,300,525,735,1176,1568,2352,3024, %T A028725 4320,5400,7425,9075,12100,14520,18876,22308,28392,33124,41405,47775, %U A028725 58800,67200,81600,92480,110976,124848,148257,165699,194940,216600,252700,279300 %N A028725 a(n) = floor(n/2) * floor((n-1)/2) * floor((n-2)/2) * floor((n-3)/2) * floor((n-4)/2) / 12. %H A028725 Harvey P. Dale, <a href="/A028725/b028725.txt">Table of n, a(n) for n = 0..1000</a> %H A028725 <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (1,5,-5,-10,10,10,-10,-5,5,1,-1). %F A028725 a(n) = a(n-1) + 5*a(n-2) - 5*a(n-3) - 10*a(n-4) + 10*a(n-5) + 10*a(n-6) - 10*a(n-7) - 5*a(n-8) + 5*a(n-9) + a(n-10) - a(n-11), with a(0)=0, a(1)=0, a(2)=0, a(3)=0, a(4)=0, a(5)=0, a(6)=1, a(7)=3, a(8)=12, a(9)=24, a(10)=60. - _Harvey P. Dale_, Jun 26 2012 %F A028725 G.f.: x^6*(1+2*x+4*x^2+2*x^3+x^4)/((1-x)^6*(1+x)^5). - _Colin Barker_, Mar 01 2015 %F A028725 From _R. J. Mathar_, Sep 23 2021: (Start) %F A028725 a(2*n+1) = A004282(n-2). %F A028725 a(2*n) = A004302(n-2). %F A028725 a(n) = A028724(n)*A002620(n-4)/6. (End) %F A028725 From _G. C. Greubel_, Apr 08 2022: (Start) %F A028725 a(n) = (1/768)*((-1)^n*(45 -65*n +38*n^2 -10*n^3 +n^4) -45 +193*n -230*n^2 +114*n^3 -25*n^4 +2*n^5). %F A028725 E.g.f.: (1/768)*((45 +36*x +15*x^2 +4*x^3 +x^4)*exp(-x) + (-45 +54*x -33*x^2 + 14*x^3 -5*x^4 +2*x^5)*exp(x)). (End) %t A028725 Table[(Times@@Floor/@(n/2-Range[0,4]/2))/12,{n,0,50}] (* or *) LinearRecurrence[ {1,5,-5,-10,10,10,-10,-5,5,1,-1}, {0,0,0,0,0,0,1,3,12,24,60}, 50] (* _Harvey P. Dale_, Jun 26 2012 *) %o A028725 (PARI) concat([0,0,0,0,0,0], Vec(x^6*(x^4+2*x^3+4*x^2+2*x+1)/((x-1)^6*(x+1)^5) + O(x^100))) \\ _Colin Barker_, Mar 01 2015 %o A028725 (Magma) [(&*[Floor((n-j)/2):j in [0..4]])/12: n in [0..60]]; // _G. C. Greubel_, Apr 08 2022 %o A028725 (SageMath) [(1/768)*((-1)^n*(45 -65*n +38*n^2 -10*n^3 +n^4) -45 +193*n -230*n^2 +114*n^3 -25*n^4 +2*n^5) for n in (0..60)] # _G. C. Greubel_, Apr 08 2022 %Y A028725 Bisections: A004282, A004302. %Y A028725 Cf. A002620, A028724. %K A028725 nonn,easy %O A028725 0,8 %A A028725 _N. J. A. Sloane_