This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A028860 #66 Dec 09 2022 07:10:34 %S A028860 -1,1,0,2,4,12,32,88,240,656,1792,4896,13376,36544,99840,272768, %T A028860 745216,2035968,5562368,15196672,41518080,113429504,309895168, %U A028860 846649344,2313089024,6319476736,17265131520,47169216512,128868696064,352075825152,961889042432,2627929735168 %N A028860 a(n+2) = 2*a(n+1) + 2*a(n); a(0) = -1, a(1) = 1. %C A028860 a(n+1) is the top left entry of the n-th power of the 3 X 3 matrix [0, 1, 1; 1, 1, 1; 1, 1, 1]. - _R. J. Mathar_, Feb 04 2014 %C A028860 (A002605, a(.+1)) is the canonical basis of the space of linear recurrent sequences with signature (2, 2), i.e., any sequence s(n) = 2(s(n-1) + s(n-2)) is given by s = s(0)*A002605 + s(1)*a(.+1). - _M. F. Hasler_, Aug 06 2018 %H A028860 Reinhard Zumkeller, <a href="/A028860/b028860.txt">Table of n, a(n) for n = 0..1000</a> %H A028860 Martin Burtscher, Igor Szczyrba, and RafaĆ Szczyrba, <a href="https://www.emis.de/journals/JIS/VOL18/Szczyrba/sz3.html">Analytic Representations of the n-anacci Constants and Generalizations Thereof</a>, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5. %H A028860 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=924">Encyclopedia of Combinatorial Structures 924</a> %H A028860 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a> %H A028860 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,2). %F A028860 a(n) = 4*A028859(n-4), for n > 3. %F A028860 From _R. J. Mathar_, Nov 27 2008: (Start) %F A028860 G.f.: -(1 - 3*x)/(1 - 2*x - 2*x^2). %F A028860 a(n) = 3*A002605(n-1) - A002605(n). (End) %F A028860 a(n) = det A, where A is the Hessenberg matrix of order n+1 defined by: A[i,j] = p(j - i + 1) (i <= j), A[i,j] = -1 (i = j + 1), A[i,j] = 0 otherwise, with p(i) = fibonacci(2i - 4). - _Milan Janjic_, May 08 2010, edited by _M. F. Hasler_, Aug 06 2018 %F A028860 a(n) = (2*sqrt(3) - 3)/6*(1 + sqrt(3))^n - (2*sqrt(3) + 3)/6*(1 - sqrt(3))^n. - _Sergei N. Gladkovskii_, Jul 18 2012 %F A028860 a(n) = 2*A002605(n-2) for n >= 2. - _M. F. Hasler_, Aug 06 2018 %F A028860 E.g.f.: exp(x)*(2*sqrt(3)*sinh(sqrt(3)*x) - 3*cosh(sqrt(3)*x))/3. - _Franck Maminirina Ramaharo_, Nov 11 2018 %p A028860 seq(coeff(series((3*x-1)/(1-2*x-2*x^2), x,n+1),x,n),n=0..30); # _Muniru A Asiru_, Aug 07 2018 %t A028860 (With a different offset) M = {{0, 2}, {1, 2}} v[1] = {0, 1} v[n_] := v[n] = M.v[n - 1] a = Table[Abs[v[n][[1]]], {n, 1, 50}] (* _Roger L. Bagula_, May 29 2005 *) %t A028860 LinearRecurrence[{2,2},{-1,1},40] (* _Harvey P. Dale_, Dec 13 2012 *) %t A028860 CoefficientList[Series[(-3 x + 1)/(2 x^2 + 2 x - 1), {x, 0, 27}], x] (* _Robert G. Wilson v_, Aug 07 2018 *) %o A028860 (Haskell) %o A028860 a028860 n = a028860_list !! n %o A028860 a028860_list = %o A028860 -1 : 1 : map (* 2) (zipWith (+) a028860_list (tail a028860_list)) %o A028860 -- _Reinhard Zumkeller_, Oct 15 2011 %o A028860 (PARI) apply( A028860(n)=([2,2;1,0]^n)[2,]*[1,-1]~, [0..30]) \\ 15% faster than (A^n*[1,-1]~)[2]. - _M. F. Hasler_, Aug 06 2018 %o A028860 (GAP) a:=[-1,1];; for n in [3..30] do a[n]:=2*a[n-1]+2*a[n-2]; od; a; # _Muniru A Asiru_, Aug 07 2018 %o A028860 (Magma) I:=[-1,1]; [n le 2 select I[n] else 2*Self(n-1)+2*Self(n-2): n in [1..40]]; // _Vincenzo Librandi_, Aug 13 2018 %o A028860 (SageMath) %o A028860 A028860 = BinaryRecurrenceSequence(2,2,-1,1) %o A028860 [A028860(n) for n in range(51)] # _G. C. Greubel_, Dec 08 2022 %Y A028860 Cf. A002605, A026150, A030195, A080040, A083337, A106435, A108898, A125145. %K A028860 sign,easy %O A028860 0,4 %A A028860 _N. J. A. Sloane_ %E A028860 Edited by _N. J. A. Sloane_, Apr 11 2009 %E A028860 Edited and initial values added in definition by _M. F. Hasler_, Aug 06 2018