This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A029073 #23 Aug 01 2025 17:04:38 %S A029073 1,1,1,1,2,2,2,3,5,5,5,6,8,8,9,11,14,14,15,17,20,21,23,26,30,31,33,36, %T A029073 41,43,46,50,56,58,61,66,73,76,80,86,94,97,102,109,118,122,128,136, %U A029073 146,151,158,167,178,184,192 %N A029073 Expansion of 1/((1-x)*(1-x^4)*(1-x^7)*(1-x^8)). %C A029073 Number of partitions of n into parts 1, 4, 7 and 8. - _Ilya Gutkovskiy_, May 18 2017 %D A029073 J. C. P. Miller, On the enumeration of partially ordered sets of integers, pp. 109-124 of T. P. McDonough and V. C. Mavron, editors, Combinatorics: Proceedings of the Fourth British Combinatorial Conference 1973. London Mathematical Society, Lecture Note Series, Number 13, Cambridge University Press, NY, 1974. The g.f. is G_{rot}(t) on page 122. %H A029073 Ray Chandler, <a href="/A029073/b029073.txt">Table of n, a(n) for n = 0..1000</a> %H A029073 <a href="/index/Rec#order_20">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,1,-1,0,1,0,-1,0,-1,0,1,0,-1,1,0,0,1,-1). %F A029073 a(n) = floor((n^3 + 30*n^2 + 257*n + 1344)/1344 + ((n+7)/64)*(3*[(n mod 4)=0] - [(n mod 4)=2]) + (1/7)*([(n mod 56)=16] - [(n mod 56)=27])). - _Hoang Xuan Thanh_, Aug 01 2025 %p A029073 1/( (1-x)*(1-x^4)*(1-x^7)*(1-x^8) ); %o A029073 (PARI) a(n) = floor((n^3 + 30*n^2 + 257*n + 1344)/1344 + (n/64)*[3,0,-1,0][n%4+1] + (3/7)*((n%8==0) - (n%28==6) - (n%28==27))) \\ _Hoang Xuan Thanh_, Aug 01 2025 %K A029073 nonn,easy %O A029073 0,5 %A A029073 _N. J. A. Sloane_