This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A029150 #17 Sep 08 2022 08:44:50 %S A029150 1,0,1,1,1,1,3,2,3,4,4,4,7,6,8,9,10,10,14,13,16,18,19,20,25,24,28,31, %T A029150 33,34,41,40,45,49,52,54,62,62,68,73,77,80,90,90,98,104,109,113,125, %U A029150 126,135,143,149,154,168,170,181 %N A029150 Expansion of 1/((1-x^2)(1-x^3)(1-x^6)(1-x^7)). %C A029150 Number of partitions of n into parts 2, 3, 6, and 7. - _Joerg Arndt_, Aug 13 2013 %H A029150 Vincenzo Librandi, <a href="/A029150/b029150.txt">Table of n, a(n) for n = 0..1000</a> %H A029150 <a href="/index/Rec#order_18">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,1,0,-1,1,1,-1,-2,-1,1,1,-1,0,1,1,0,-1). %t A029150 CoefficientList[Series[1/((1 - x^2) (1 - x^3) (1 - x^6) (1 - x^7)), {x, 0, 100}], x] (* _Vincenzo Librandi_, Aug 13 2013 *) %o A029150 (PARI) Vec(1/((1-x^2)*(1-x^3)*(1-x^6)*(1-x^7))+O(x^99)) \\ _Charles R Greathouse IV_, Sep 27 2012 %o A029150 (Magma) m:=80; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x^2)*(1-x^3)*(1-x^6)*(1-x^7)))); // _Vincenzo Librandi_, Aug 13 2013 %K A029150 nonn,easy %O A029150 0,7 %A A029150 _N. J. A. Sloane_