This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A029471 #44 Jan 14 2025 11:09:41 %S A029471 1,85,145,245,1189,356717,19590671,35741759,791822369,25313027035 %N A029471 Numbers k that divide the (left) concatenation of all numbers <= k written in base 2 (most significant digit on left). %C A029471 No other terms below 3*10^10. %H A029471 <a href="/index/N#concat">Index entries for related sequences</a> %t A029471 b = 2; c = {}; Select[Range[10^4], Divisible[FromDigits[c = Join[IntegerDigits[#, b], c], b], #] &] (* _Robert Price_, Mar 12 2020 *) %o A029471 (Python) %o A029471 from itertools import count %o A029471 def a029471(): %o A029471 total = 0 %o A029471 power_of_two = 1 %o A029471 index_of_two = 0 %o A029471 length_of_string = 0 %o A029471 for n in count(1): %o A029471 total += (n<<length_of_string) %o A029471 if n == power_of_two: %o A029471 power_of_two *= 2 %o A029471 index_of_two += 1 %o A029471 length_of_string += index_of_two %o A029471 if total % n == 0: %o A029471 yield n %o A029471 # _Christian Perfect_, Feb 07 2014 %o A029471 (Python) %o A029471 def concat_mod(base, k, mod): ... # See A029479 %o A029471 for k in range(1, 3*10**10): %o A029471 if concat_mod(2, k, k) == 0: print(k) # _Jason Yuen_, Mar 24 2024 %Y A029471 Cf. A007088. %Y A029471 Cf. A029447-A029470, A029471-A029494, A029495-A029518, A029519-A029542, A061931-A061954, A061955-A061978. %K A029471 nonn,base,hard,more %O A029471 1,2 %A A029471 _Olivier Gérard_ %E A029471 One more term from Larry Reeves (larryr(AT)acm.org), Dec 03 2001 %E A029471 Edited and updated by Larry Reeves (larryr(AT)acm.org), Apr 12 2002 %E A029471 a(7)-a(8) from _Max Alekseyev_, May 12 2011 %E A029471 a(9)-a(10) from _Jason Yuen_, Mar 24 2024