This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A029576 #26 Aug 11 2024 22:06:25 %S A029576 0,0,0,0,0,0,0,0,0,40320,403200,4435200,53222400,691891200,9686476800, %T A029576 145297152000,2324754432000,39520825344000,671854030848000, %U A029576 12765226586112000,255304531722240000,5361395166167040000,117950693655674880000,2712865954080522240000 %N A029576 Number of permutations of an n-set containing a 9-cycle. %H A029576 Alois P. Heinz, <a href="/A029576/b029576.txt">Table of n, a(n) for n = 0..450</a> %F A029576 a(n) = n!*(1 - Sum_{k=0..floor(n/9)} (-1)^k/(k!*9^k)). %F A029576 a(n)/n! is asymptotic to 1-e^(-1/9). %F A029576 E.g.f.: (1-exp(-x^9/9))/(1-x). - _Alois P. Heinz_, Oct 11 2017 %F A029576 Conjectures from _Stéphane Rézel_, Nov 24 2019: (Start) %F A029576 Recurrence: a(n) = n*a(n-1), for n > 9 and n !== 0 (mod 9); %F A029576 for k > 1, a(9*k) = a(9*k-1)*S(k)/S(k-1) where S(k) = 9*k*S(k-1) - (-1)^k with S(1) = 1. %F A029576 (End) %t A029576 Table[n!*(1 - Sum[(-1)^k/(k!*9^k), {k, 0, Floor[n/9]}]), {n, 0, 25}] (* _Paolo Xausa_, Aug 11 2024 *) %o A029576 (PARI) a(n) = n! * (1 - sum(k=0, floor(n/9), (-1)^k/(k!*9^k) ) ); \\ _Stéphane Rézel_, Nov 24 2019 %Y A029576 Column k=9 of A293211. %K A029576 nonn %O A029576 0,10 %A A029576 _Rob Pratt_