This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A029577 #17 Dec 13 2019 05:40:15 %S A029577 0,0,0,0,0,0,0,0,0,0,362880,3991680,47900160,622702080,8717829120, %T A029577 130767436800,2092278988800,35568742809600,640237370572800, %U A029577 12164510040883200,231125690776780800,4853639506312396800,106780069138872729600,2455941590194072780800 %N A029577 Number of permutations of an n-set containing a 10-cycle. %H A029577 Alois P. Heinz, <a href="/A029577/b029577.txt">Table of n, a(n) for n = 0..450</a> %F A029577 a(n) = n! * (1 - Sum_{k=0..floor(n/10)} (-1)^k/(k!10^k)); %F A029577 a(n)/n! is asymptotic to 1-e^(-1/10). %F A029577 E.g.f.: (1-exp(-x^10/10))/(1-x). - _Alois P. Heinz_, Oct 11 2017 %F A029577 Conjectures from _Stéphane Rézel_, Dec 11 2019: (Start) %F A029577 Recurrence: a(n) = n*a(n-1), for n > 10 and n !== 0 (mod 10); %F A029577 for k > 1, a(10*k) = a(10*k-1)*S(k)/S(k-1) where S(k) = 10*k*S(k-1) - (-1)^k with S(1) = 1. %F A029577 (End) %o A029577 (PARI) a(n) = n! * (1 - sum(k=0, floor(n/10), (-1)^k/(k!*10^k) ) ); \\ _Stéphane Rézel_, Dec 11 2019 %Y A029577 Column k=10 of A293211. %K A029577 nonn %O A029577 0,11 %A A029577 _Rob Pratt_