This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A029582 #20 Jul 08 2025 19:14:41 %S A029582 1,2,-1,1,1,17,-1,271,1,7937,-1,353791,1,22368257,-1,1903757311,1, %T A029582 209865342977,-1,29088885112831,1,4951498053124097,-1, %U A029582 1015423886506852351,1,246921480190207983617,-1,70251601603943959887871,1,23119184187809597841473537 %N A029582 E.g.f. sin(x) + cos(x) + tan(x). %H A029582 T. D. Noe, <a href="/A029582/b029582.txt">Table of n, a(n) for n = 0..100</a> %F A029582 G.f.: (1+x)/(1+x^2)+x/T(0) where T(k)= 1 - (k+1)*(k+2)*x^2/T(k+1) ; (recursively defined continued fraction). - _Sergei N. Gladkovskii_, Feb 12 2013 %F A029582 G.f.: (1+x)/(1+x^2)+x/G(0) where G(k) = 1 - 2*x^2*(4*k^2+4*k+1) - 4*x^4*(k+1)^2*(4*k^2+8*k+3)/G(k+1); (recursively defined continued fraction). - _Sergei N. Gladkovskii_, Feb 12 2013 %t A029582 nn = 30; Range[0, nn]! CoefficientList[Series[Tan[x] + Sin[x] + Cos[x], {x, 0, nn}], x] (* _T. D. Noe_, Jul 16 2012 *) %o A029582 (Sage) # Variant of an algorithm of L. Seidel (1877). %o A029582 def A029582_list(n) : %o A029582 dim = 2*n; E = matrix(ZZ, dim); E[0, 0] = 1 %o A029582 for m in (1..dim-1) : %o A029582 if m % 2 == 0 : %o A029582 E[m, 0] = 1; %o A029582 for k in range(m-1, -1, -1) : %o A029582 E[k, m-k] = E[k+1, m-k-1] - E[k, m-k-1] %o A029582 else : %o A029582 E[0, m] = 1; %o A029582 for k in range(1, m+1, 1) : %o A029582 E[k, m-k] = E[k-1, m-k+1] + E[k-1, m-k] %o A029582 return [(-1)^(k//2)*E[k,0] for k in range(dim)] %o A029582 A029582_list(15) # _Peter Luschny_, Jul 14 2012 %Y A029582 Cf. A009744, A099023. %K A029582 sign %O A029582 0,2 %A A029582 _N. J. A. Sloane_