A029590 For n>0, a(n) is the least quasi-Carmichael number to base n; a(0) = least composite squarefree integer.
6, 561, 1595, 35, 1705, 77, 13481, 187, 143, 209, 4807, 221, 14807, 493, 20723, 323, 7429, 437, 36593, 943, 713, 989, 1147, 1073, 899, 1537, 1271, 899, 1333, 1517, 104355281, 1591, 1517, 2993, 1591, 1517, 621193, 3397, 1763, 1763, 2623, 2021
Offset: 0
Keywords
Examples
For n=6 the minimum is a(n)=13481. Prime factors of 13481 are 13, 17 and 61. We have 13481 - 6 = 13475, 13 - 6 = 7 and 13475 / 7 = 1925, 17 - 6 = 11 and 13475 / 11 = 1225, 61 - 6 = 55 and 13475 / 55 = 245. - _Elijah Beregovsky_, Feb 15 2020
Links
Programs
-
Mathematica
qcQ[n_,k_] := Module[{f = FactorInteger[n]}, p = f[[;; , 1]]; e = f[[;; , 2]];om=Length[e]; om>=2 && Max[e] == 1 && Min[p]>k && Length@Select[p, Divisible[n-k, #-k]&] == om]; seq[k_]:=SelectFirst[Range[1,50000], qcQ[#,k]&]; Print[seq/@Range[0,29]]; (* Elijah Beregovsky, Feb 15 2020 *)
Comments