This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A029618 #40 Nov 13 2019 01:49:27 %S A029618 1,3,2,3,5,2,3,8,7,2,3,11,15,9,2,3,14,26,24,11,2,3,17,40,50,35,13,2,3, %T A029618 20,57,90,85,48,15,2,3,23,77,147,175,133,63,17,2,3,26,100,224,322,308, %U A029618 196,80,19,2,3,29,126,324,546,630,504,276,99,21,2,3,32,155,450,870 %N A029618 Numbers in (3,2)-Pascal triangle (by row). %C A029618 Reverse of A029600. - _Philippe Deléham_, Nov 21 2006 %C A029618 Triangle T(n,k), read by rows, given by (3,-2,0,0,0,0,0,0,0,...) DELTA (2,-1,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Oct 10 2011 %C A029618 Row n: expansion of (3+2x)*(1+x)^(n-1), n>0. - _Philippe Deléham_, Oct 10 2011 %C A029618 For a closed-form formula for generalized Pascal's triangle see A228576. - _Boris Putievskiy_, Sep 04 2013 %H A029618 G. C. Greubel, <a href="/A029618/b029618.txt">Rows n = 0..100 of triangle, flattened</a> %F A029618 T(n,k) = T(n-1,k-1) + T(n-1,k) with T(0,0)=1, T(n,0)=3, T(n,n)=2; n, k > 0. - _Boris Putievskiy_, Sep 04 2013 %F A029618 G.f.: (-1-x*y-2*x)/(-1+x*y+x). - _R. J. Mathar_, Aug 11 2015 %e A029618 Triangle begins as: %e A029618 1; %e A029618 3, 2; %e A029618 3, 5, 2; %e A029618 3, 8, 7, 2; %e A029618 3, 11, 15, 9, 2; %e A029618 ... %p A029618 A029618 := proc(n,k) %p A029618 if k < 0 or k > n then %p A029618 0; %p A029618 elif n = 0 then %p A029618 1; %p A029618 elif k=0 then %p A029618 3; %p A029618 elif k = n then %p A029618 2; %p A029618 else %p A029618 procname(n-1,k-1)+procname(n-1,k) ; %p A029618 end if; %p A029618 end proc: # _R. J. Mathar_, Jul 08 2015 %t A029618 T[n_, k_]:= T[n, k]= If[n==0 && k==0, 1, If[k==0, 3, If[k==n, 2, T[n-1, k-1] + T[n-1, k] ]]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* _G. C. Greubel_, Nov 13 2019 *) %o A029618 (PARI) T(n,k) = if(n==0 && k==0, 1, if(k==0, 3, if(k==n, 2, T(n-1, k-1) + T(n-1, k) ))); \\ _G. C. Greubel_, Nov 12 2019 %o A029618 (Sage) %o A029618 @CachedFunction %o A029618 def T(n, k): %o A029618 if (n==0 and k==0): return 1 %o A029618 elif (k==0): return 3 %o A029618 elif (k==n): return 2 %o A029618 else: return T(n-1,k-1) + T(n-1, k) %o A029618 [[T(n, k) for k in (0..n)] for n in (0..12)] # _G. C. Greubel_, Nov 12 2019 %o A029618 (GAP) %o A029618 T:= function(n,k) %o A029618 if n=0 and k=0 then return 1; %o A029618 elif k=0 then return 3; %o A029618 elif k=n then return 2; %o A029618 else return T(n-1,k-1) + T(n-1,k); %o A029618 fi; %o A029618 end; %o A029618 Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # _G. C. Greubel_, Nov 12 2019 %Y A029618 Cf. A007318, A029600, A084938, A228196, A228576, A016789 (2nd column), A005449 (3rd column), A006002 (4th column). %K A029618 nonn,easy,tabl %O A029618 0,2 %A A029618 _Mohammad K. Azarian_