This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A029656 #24 Jul 02 2025 16:01:56 %S A029656 2,2,3,2,5,4,2,7,9,5,2,9,16,14,6,2,11,25,30,20,7,2,13,36,55,50,27,8,2, %T A029656 15,49,91,105,77,35,9,2,17,64,140,196,182,112,44,10,2,19,81,204,336, %U A029656 378,294,156,54,11,2,21,100,285,540,714,672,450,210,65,12,2,23,121,385 %N A029656 Numbers in the (2,1)-Pascal triangle A029653 that are different from 1. %D A029656 D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; triangle on page 6, numerators. %H A029656 Michael De Vlieger, <a href="/A029656/b029656.txt">Table of n, a(n) for n = 1..11325</a> (rows 1 <= n <= 150) %H A029656 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/AlternatingSignMatrix.html">Alternating Sign Matrix.</a> %H A029656 D. Zeilberger, <a href="http://www.math.rutgers.edu/~zeilberg/DaveRobbins/guess.html">Dave Robbins's Art of Guessing</a>, Adv. in Appl. Math. 34 (2005), 939-954. %F A029656 From _Thomas Baruchel_, Jun 26 2018: (Start) %F A029656 a(n,k) = (binomial(n+2,k+1) + binomial(n+1,k) + binomial(n,k) - binomial(n,k+1))/2. %F A029656 a(n,k) = binomial(n-1,k-1) + binomial(n-1,k) + binomial(n,k-1) + binomial(n,k). (End) %e A029656 Triangle begins: %e A029656 2; %e A029656 2, 3; %e A029656 2, 5, 4; %e A029656 2, 7, 9, 5; %e A029656 2, 9, 16, 14, 6; %e A029656 2, 11, 25, 30, 20, 7; %e A029656 ... %t A029656 Table[(Binomial[n + 2, k + 1] + Binomial[n + 1, k] + Binomial[n, k] - Binomial[n, k + 1])/2, {n, 0, 11}, {k, 0, n}] // Flatten (* _Michael De Vlieger_, Jun 29 2018 *) %Y A029656 Cf. A048601, A029638. %K A029656 nonn,tabl %O A029656 1,1 %A A029656 _Mohammad K. Azarian_ %E A029656 More terms from _James Sellers_