This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A029703 #16 May 13 2013 01:54:04 %S A029703 79,142,223,229,254,257,321,326,359,443,469,473,659,733,761,839,934, %T A029703 993,1091,1101,1171,1223,1229,1257,1367,1373,1478,1489,1509,1523,1567, %U A029703 1627,1646,1787,1811,1847,1901,1907,1929,1957,1987,2021,2089,2099,2101,2143,2177,2207,2213 %N A029703 Q(sqrt(n)) has class number 3. %H A029703 Charles R Greathouse IV, <a href="/A029703/b029703.txt">Table of n, a(n) for n = 1..10000</a> %H A029703 <a href="/index/Qua#quadfield">Index entries for sequences related to quadratic fields</a> %e A029703 79 is in the sequence because Z[sqrt(79)] has class number 3. %e A029703 Z[sqrt(82)] has class number 4 and therefore 82 is not in the sequence. %t A029703 Select[Range[2000], SquareFreeQ[#] && NumberFieldClassNumber[Sqrt[#]] == 3 &] (* _Alonso del Arte_, Oct 17 2012 *) %o A029703 (PARI) %o A029703 A007947(n)={my(p); p=factor(n)[, 1]; prod(i=1, length(p), p[i]); } %o A029703 { for (n=2, 10^4, %o A029703 if ( n!=A007947(n), next() ); %o A029703 K = bnfinit(x^2 - n); %o A029703 if ( K.cyc == [3], print1( n, ", ") ); %o A029703 ); } %o A029703 /* _Joerg Arndt_, Oct 18 2012 */ %Y A029703 Cf. A003172, A029702, A029704-A029705, A218038-A218042. %K A029703 nonn %O A029703 1,1 %A A029703 Paolo Dominici (pl.dm(AT)libero.it) %E A029703 Missing initial term (79) added by _Alonso del Arte_, Oct 17 2012