This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A029733 #26 Feb 12 2025 12:01:59 %S A029733 0,1,2,3,17,34,257,273,289,305,319,514,530,546,773,1377,4097,4369, %T A029733 4641,8194,8254,8466,8734,9046,51629,65537,65793,66049,66305,69649, %U A029733 69905,70161,70417,73505,73761,74017,74273,76879,92327,131074 %N A029733 Numbers k such that k^2 is palindromic in base 16. %H A029733 Seiichi Manyama, <a href="/A029733/b029733.txt">Table of n, a(n) for n = 1..100</a> %H A029733 Patrick De Geest, <a href="https://www.worldofnumbers.com/nobase10pg2.htm">Palindromic Squares in bases 2 to 17</a> %t A029733 n2palQ[n_]:=Module[{id=IntegerDigits[n^2,16]},id==Reverse[id]]; Select[ Range[ 0,150000],n2palQ] (* _Harvey P. Dale_, Mar 31 2018 *) %o A029733 (Python) %o A029733 from itertools import count, islice %o A029733 def A029733_gen(): # generator of terms %o A029733 return filter(lambda k: (s:=hex(k**2)[2:])[:(t:=(len(s)+1)//2)]==s[:-t-1:-1],count(0)) %o A029733 A029733_list = list(islice(A029733_gen(),20)) # _Chai Wah Wu_, Jun 23 2022 %Y A029733 Numbers k such that k^2 is palindromic in base b: A003166 (b=2), A029984 (b=3), A029986 (b=4), A029988 (b=5), A029990 (b=6), A029992 (b=7), A029805 (b=8), A029994 (b=9), A002778 (b=10), A029996 (b=11), A029737 (b=12), A029998 (b=13), A030072 (b=14), A030073 (b=15), this sequence (b=16), A118651 (b=17). %K A029733 nonn,base %O A029733 1,3 %A A029733 _Patrick De Geest_