This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A029740 #25 Aug 04 2022 15:52:21 %S A029740 1,3,5,7,9,13,15,17,19,21,23,25,27,29,31,35,37,39,41,43,45,47,49,51, %T A029740 53,57,59,61,63,65,67,69,71,73,75,79,81,83,85,87,89,91,93,95,97,103, %U A029740 105,107,109,123,125,127,129,135,137,139,143,145,147,149,153,157 %N A029740 Odd numbers with distinct digits. %C A029740 The sequence has 4384045 terms. - _Harvey P. Dale_, Jan 12 2019 %C A029740 Maximum term is 9876543201. Next higher number with distinct digits is 9876543210. - _Alonso del Arte_, Jan 09 2020 %H A029740 Michael S. Branicky, <a href="/A029740/b029740.txt">Table of n, a(n) for n = 1..10000</a> %H A029740 Patrick De Geest, <a href="http://www.worldofnumbers.com/index.html">World!Of Numbers</a> %t A029740 Select[Range[1, 199, 2], Max[DigitCount[#]] == 1 &] (* _Harvey P. Dale_, Jan 12 2019 *) %o A029740 (Scala) def hasDistinctDigits(n: Int): Boolean = { %o A029740 val numerStr = n.toString %o A029740 val digitSet = numerStr.split("").toSet %o A029740 numerStr.length == digitSet.size %o A029740 } %o A029740 (1 to 199 by 2).filter(hasDistinctDigits) // _Alonso del Arte_, Jan 09 2020 %o A029740 (Python) # generates full sequence %o A029740 from itertools import permutations %o A029740 afull = sorted(set(int("".join(p)) for d in range(1, 11) for p in permutations("0123456789", d) if p[0] != "0" and p[-1] in "13579")) %o A029740 print(afull[:100]) # _Michael S. Branicky_, Aug 04 2022 %Y A029740 Cf. A029741 (even version). Union of that sequence with this sequence gives A010784. %K A029740 nonn,fini,base %O A029740 1,2 %A A029740 _Patrick De Geest_ %E A029740 First comment corrected by _Harvey P. Dale_, Mar 04 2020 at the insistence of _Sean A. Irvine_ %E A029740 Offset changed to 1 by _Michael S. Branicky_, Aug 04 2022 %E A029740 Removed incorrect Sage program. - _N. J. A. Sloane_, Aug 04 2022