This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A029745 #31 Jan 21 2022 05:04:50 %S A029745 1,2,8,5,16,10,32,20,64,40,128,80,256,160,512,320,1024,640,2048,1280, %T A029745 4096,2560,8192,5120,16384,10240,32768,20480,65536,40960,131072,81920, %U A029745 262144,163840,524288,327680,1048576,655360,2097152,1310720,4194304 %N A029745 Expansion of (1 + 2x + 6x^2 + x^3)/(1 - 2x^2). %C A029745 Note that 4 is the only power of 2 not here. All terms are either 2^k or 5*2^k. %H A029745 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (0,2). %F A029745 G.f.: (1 + 2x + 6x^2 + x^3)/(1 - 2x^2). %F A029745 Sum_{n>=1} 1/a(n) = 43/20. - _Amiram Eldar_, Jan 21 2022 %t A029745 LinearRecurrence[{0,2},{1,2,8,5},50] (* or *) With[{nn=20},Join[{1,2}, Riffle[ 8*2^Range[0,nn],5 2^Range[0,nn]]]] (* _Harvey P. Dale_, Sep 28 2016 *) %o A029745 (PARI) a(n)=if(n<2,1+max(-1,n),2^(n\2)*if(n%2,5/2,4)) %Y A029745 Cf. A094958 (numbers of the form 2^k or 5*2^k). %K A029745 nonn,easy %O A029745 1,2 %A A029745 _N. J. A. Sloane_ %E A029745 Edited by _T. D. Noe_, Nov 12 2010