cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A029749 Numbers of the form 2^k times 1, 5 or 7.

This page as a plain text file.
%I A029749 #21 Jan 21 2022 05:07:22
%S A029749 1,2,4,5,7,8,10,14,16,20,28,32,40,56,64,80,112,128,160,224,256,320,
%T A029749 448,512,640,896,1024,1280,1792,2048,2560,3584,4096,5120,7168,8192,
%U A029749 10240,14336,16384,20480,28672,32768,40960,57344,65536,81920,114688,131072
%N A029749 Numbers of the form 2^k times 1, 5 or 7.
%H A029749 Vincenzo Librandi, <a href="/A029749/b029749.txt">Table of n, a(n) for n = 0..1000</a>
%H A029749 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,2).
%F A029749 From _Colin Barker_, Jul 19 2013: (Start)
%F A029749 a(n) = 2*a(n-3) for n>4.
%F A029749 G.f.: -(3*x^4 + 3*x^3 + 4*x^2 + 2*x + 1) / (2*x^3 - 1). (End)
%F A029749 Sum_{n>=0} 1/a(n) = 94/35. - _Amiram Eldar_, Jan 21 2022
%t A029749 CoefficientList[Series[-(3 x^4 + 3 x^3 + 4 x^2 + 2 x + 1) / (2 x^3 - 1), {x, 0, 40}], x] (* _Vincenzo Librandi_, Jul 20 2013 *)
%Y A029749 Cf. A000079, A005009, A029746, A029748, A094958.
%K A029749 nonn,easy
%O A029749 0,2
%A A029749 _N. J. A. Sloane_
%E A029749 More terms from _Colin Barker_, Jul 19 2013