cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A029751 Average theta series of odd unimodular lattices in dimension 12.

This page as a plain text file.
%I A029751 #20 Dec 13 2017 02:45:58
%S A029751 1,8,248,1952,7928,25008,60512,134464,253688,474344,775248,1288416,
%T A029751 1934432,2970352,4168384,6101952,8118008,11358864,14704664,19808800,
%U A029751 24782928,32809216,39940896,51490752,61899872,78150008,92080912
%N A029751 Average theta series of odd unimodular lattices in dimension 12.
%D A029751 R. A. Rankin, Modular Forms, p. 240 ff.
%D A029751 E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 121.
%H A029751 G. C. Greubel, <a href="/A029751/b029751.txt">Table of n, a(n) for n = 0..5000</a>
%F A029751 G.f.: 1 + 8*Sum_{k>0} k^5 x^k/(1+(-x)^k). - _Michael Somos_, Sep 21 2005
%F A029751 A000145(n) = a(n) + 16*A000735(n). - _Michael Somos_, Sep 21 2005
%t A029751 a[0] = 1; a[n_] := (-1)^(n-1)*8*DivisorSum[n, (-1)^(n + n/#)*#^5&]; Table[a[n], {n, 0, 26}] (* _Jean-François Alcover_, Jul 06 2017, translated from PARI *)
%o A029751 (PARI) a(n)=if(n<1, n==0, (-1)^(n-1)*8*sumdiv(n,d,(-1)^(n+n/d)*d^5)) /* _Michael Somos_, Sep 21 2005 */
%Y A029751 Cf. A000145, A000735.
%K A029751 nonn
%O A029751 0,2
%A A029751 _N. J. A. Sloane_