This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A029785 #50 May 02 2020 02:19:44 %S A029785 2,3,7,8,22,27,43,47,48,52,53,63,68,77,92,157,172,177,187,188,192,222, %T A029785 223,252,263,303,378,408,423,442,458,468,477,478,487,527,552,558,577, %U A029785 587,588,608,648,692,707,772,808,818,823,843,888,918,922 %N A029785 Numbers k whose cube k^3 has no digit in common with k. %C A029785 Original name: Digits of n are not present in n^3. %C A029785 Might be called "Exclusionary Cubes", although this might be reserved for terms having no duplicate digits, cf. link to rec.puzzles discussion group. In that case the largest term would be 7658 = A113951(3). - _M. F. Hasler_, Oct 17 2018; corrected thanks to _David Radcliffe_ and _Michel Marcus_, Apr 30 2020 %H A029785 Giovanni Resta, <a href="/A029785/b029785.txt">Table of n, a(n) for n = 1..1699</a> (terms < 10^19, first 528 terms from Charles R Greathouse IV) %H A029785 Cliff Pickover et al, <a href="https://groups.google.com/forum/#!topic/rec.puzzles/ubSItPD_DGY">Exclusionary Squares and Cubes</a>, rec.puzzles topic on google groups, January 2002 %e A029785 k = 80800000008880080808880080088 is in the sequence because the 87-digit number k^3 has only digits 1, ..., 7 and 9. - _M. F. Hasler_, Oct 16 2018 %t A029785 Select[Range[5000], Intersection[IntegerDigits[#], IntegerDigits[#^3]]=={}&] (* _Vincenzo Librandi_, Oct 04 2013 *) %o A029785 (PARI) is(n)=my(d=Set(digits(n))); setminus(d,Set(digits(n^3)))==d \\ _Charles R Greathouse IV_, Oct 02 2013 %o A029785 (PARI) is_A029785(n)=setintersect(Set(digits(n)),Set(digits(n^3)))==[] \\ _M. F. Hasler_, Oct 16 2018 %Y A029785 Cf. A029786, A029783, A029784, A111116, A113316. %K A029785 nonn,base %O A029785 1,1 %A A029785 _Patrick De Geest_ %E A029785 Name reworded by _Jon E. Schoenfield_ and _M. F. Hasler_, Oct 16 2018