cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A029817 Average theta series of odd unimodular lattices of dimension 16 (multiplied by 17).

This page as a plain text file.
%I A029817 #18 Jan 07 2025 02:37:34
%S A029817 17,32,4064,70016,528352,2500032,8892032,26353408,67637216,153125024,
%T A029817 317504064,623589504,1156034176,2007952576,3346882816,5470070016,
%U A029817 8657571808,13130837568,19446878048,28603895680,41278028352,57661256704,79195867008,108954414336,147990228608
%N A029817 Average theta series of odd unimodular lattices of dimension 16 (multiplied by 17).
%H A029817 Heng Huat Chan and Christian Krattenthaler, <a href="https://doi.org/10.1112/S0024609305004820">Recent progress in the study of representations of integers as sums of squares</a>, Bulletin of the London Mathematical Society, Vol. 37, No. 6 (2005), pp. 818-826; <a href="https://arxiv.org/abs/math/0407061">arXiv preprint</a>, arXiv:math/0407061 [math.NT], 2004.
%F A029817 G.f.: 17 + 32 * Sum_{k >= 1} k^7*q^k/(1-(-q)^k).
%F A029817 a(n) = 32 * (-1)^n * (A013955(n) - 2 * A321811(2*n)) for n >= 1. - _Amiram Eldar_, Jan 07 2025
%t A029817 max = 20; s = 17 + 32*Sum[k^7*q^k/(1-(-q)^k), {k, 1, max}] + O[q]^max; CoefficientList[s, q] (* _Jean-François Alcover_, Dec 07 2015 *)
%o A029817 (PARI) a(n)=if(n<1,17*(n==0),32*sumdiv(n,d,d^7-2*if(d%4==2,(d/2)^7))) /* _Michael Somos_, Jul 16 2004 */
%Y A029817 Cf. A013955, A321811.
%K A029817 nonn
%O A029817 0,1
%A A029817 _N. J. A. Sloane_