cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A029833 A discrete version of the Mangoldt function: if n is prime then round(log(n)) else 0.

This page as a plain text file.
%I A029833 #13 Jul 08 2025 19:22:33
%S A029833 0,1,1,0,2,0,2,0,0,0,2,0,3,0,0,0,3,0,3,0,0,0,3,0,0,0,0,0,3,0,3,0,0,0,
%T A029833 0,0,4,0,0,0,4,0,4,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,4,0,4,0,0,0,0,0,4,0,
%U A029833 0,0,4,0,4,0,0,0,0,0,4,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,0,0,5,0,0,0,5,0,5,0,0,0,5,0,5,0,0,0,5,0,0
%N A029833 A discrete version of the Mangoldt function: if n is prime then round(log(n)) else 0.
%C A029833 The real Mangoldt function Lambda(n) is equal to log(n) if n is prime else 0.
%D A029833 T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 32.
%D A029833 P. Ribenboim, Algebraic Numbers, p. 44.
%H A029833 Antti Karttunen, <a href="/A029833/b029833.txt">Table of n, a(n) for n = 1..65539</a>
%t A029833 Table[If[PrimeQ[n],Round[Log[n]],0],{n,200}] (* _Harvey P. Dale_, Nov 25 2020 *)
%o A029833 (PARI) A029833(n) = if(!isprime(n),0,round(log(n))); \\ _Antti Karttunen_, Feb 06 2019
%Y A029833 Cf. A029832, A029834, A053821.
%K A029833 nonn,easy
%O A029833 1,5
%A A029833 _N. J. A. Sloane_
%E A029833 More terms from _Antti Karttunen_, Feb 06 2019