This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A029847 #30 Jul 08 2025 19:23:01 %S A029847 1,1,1,1,1,5,1,1,17,17,1,1,49,146,49,1,1,129,922,922,129,1,1,321,4887, %T A029847 11234,4887,321,1,1,769,23151,106439,106439,23151,769,1,1,1793,101488, %U A029847 856031,1679494,856031,101488,1793,1,1,4097,420512,6137832,21442606,21442606,6137832,420512,4097,1 %N A029847 Gessel-Stanley triangle read by rows: triangle of coefficients of polynomials arising in connection with enumeration of intransitive trees by number of nodes and number of right nodes. %C A029847 For precise definition see Knuth (1997). %C A029847 Named after the American mathematicians Ira Martin Gessel (b. 1951) and Richard Peter Stanley (b. 1944). - _Amiram Eldar_, Jun 11 2021 %H A029847 Alois P. Heinz, <a href="/A029847/b029847.txt">Rows n = 0..141, flattened</a> %H A029847 Donald E. Knuth, <a href="/A323841/a323841.pdf">Letter to Daniel Ullman and others</a>, Apr 29 1997. [Annotated scanned copy, with permission] %H A029847 Alexander Postnikov, <a href="https://doi.org/10.1006/jcta.1996.2735">Intransitive Trees</a>, J. Combin. Theory Ser. A, Vol. 79, No. 2 (1997), pp. 360-366. %e A029847 Triangle begins: %e A029847 1; %e A029847 . 1; %e A029847 . 1, 1; %e A029847 . 1, 5, 1; %e A029847 . 1, 17, 17, 1; %e A029847 . 1, 49, 146, 49, 1; %e A029847 . 1, 129, 922, 922, 129, 1; %e A029847 . ... %p A029847 f:= proc(n,k) option remember; `if`(k<0, 0, `if`(n=0 %p A029847 and k=0, 1, f(n-1,k-1)+add(add(binomial(n-1, l) %p A029847 *s*f(l,s)*f(n-l-1,k-s), s=1..l), l=1..n-1))) %p A029847 end: %p A029847 seq(seq(f(n, k), k=min(n, 1)..n), n=0..10); # _Alois P. Heinz_, Sep 24 2019 %t A029847 f[n_, k_] := f[n, k] = If[k<0, 0, If[n==0 && k==0, 1, f[n-1, k-1]+Sum[Sum[ Binomial[n-1, l]*s*f[l, s]*f[n-l-1, k-s], {s, 1, l}], {l, 1, n-1}]]]; %t A029847 Table[Table[f[n, k], {k, Min[n, 1], n}], {n, 0, 10}] // Flatten (* _Jean-François Alcover_, Feb 14 2021, after _Alois P. Heinz_ *) %Y A029847 Row sums give A007889. %K A029847 nonn,tabf,easy %O A029847 0,6 %A A029847 _N. J. A. Sloane_ %E A029847 More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 23 2003