This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A029889 #25 Apr 18 2021 17:25:34 %S A029889 1,2,5,14,43,140,476,1664,5939,21518,78876,291784,1087441,4077662, %T A029889 15369327,58184110,221104527,842990294,3223339023 %N A029889 Number of graphical partitions (degree-vectors for graphs with n vertices, allowing self-loops which count as degree 1; or possible ordered row-sum vectors for a symmetric 0-1 matrix). %C A029889 I call loops of degree one half-loops, so these are half-loop-graphs or graphs with half-loops. - _Gus Wiseman_, Dec 31 2020 %D A029889 R. A. Brualdi, H. J. Ryser, Combinatorial Matrix Theory, Cambridge Univ. Press, 1992. %H A029889 T. M. Barnes and C. D. Savage, <a href="https://doi.org/10.37236/1205">A recurrence for counting graphical partitions</a>, Electronic J. Combinatorics, 2 (1995). %H A029889 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DegreeSequence.html">Degree Sequence.</a> %H A029889 Gus Wiseman, <a href="/A339741/a339741_1.txt">Counting and ranking factorizations, factorability, and vertex-degree partitions for groupings into pairs.</a> %H A029889 <a href="/index/Gra#graph_part">Index entries for sequences related to graphical partitions</a> %F A029889 Calculated using Cor. 6.3.3, Th. 6.3.6, Cor. 6.2.5 of Brualdi-Ryser. %F A029889 a(n) = A029890(n) + A029891(n). - _Andrew Howroyd_, Apr 18 2021 %e A029889 From _Gus Wiseman_, Dec 31 2020: (Start) %e A029889 The a(0) = 1 through a(3) = 14 sorted degree sequences: %e A029889 () (0) (0,0) (0,0,0) %e A029889 (1) (1,0) (1,0,0) %e A029889 (1,1) (1,1,0) %e A029889 (2,1) (2,1,0) %e A029889 (2,2) (2,2,0) %e A029889 (1,1,1) %e A029889 (2,1,1) %e A029889 (3,1,1) %e A029889 (2,2,1) %e A029889 (3,2,1) %e A029889 (2,2,2) %e A029889 (3,2,2) %e A029889 (3,3,2) %e A029889 (3,3,3) %e A029889 For example, the half-loop-graph %e A029889 {{1,3},{3}} %e A029889 has degrees (1,0,2), so (2,1,0) is counted under a(3). The half-loop-graphs %e A029889 {{1},{1,2},{1,3},{2,3}} %e A029889 {{1},{2},{3},{1,2},{1,3}} %e A029889 both have degrees (3,2,2), so (3,2,2) is counted under a(3). %e A029889 (End) %t A029889 Table[Length[Union[Sort[Table[Count[Join@@#,i],{i,n}]]&/@Subsets[Subsets[Range[n],{1,2}]]]],{n,0,5}] (* _Gus Wiseman_, Dec 31 2020 *) %Y A029889 Cf. A000569, A004250, A029890, A029891. %Y A029889 Non-half-loop-graphical partitions are conjectured to be counted by A321728. %Y A029889 The covering case (no zeros) is A339843. %Y A029889 MM-numbers of half-loop-graphs are given by A340018 and A340019. %Y A029889 A004251 counts degree sequences of graphs, with covering case A095268. %Y A029889 A320663 counts unlabeled multiset partitions into singletons/pairs. %Y A029889 A339659 is a triangle counting graphical partitions. %Y A029889 A339844 counts degree sequences of loop-graphs, with covering case A339845. %Y A029889 Cf. A006125, A006129, A027187, A028260, A062740, A096373, A322661, A339560. %K A029889 nonn,more %O A029889 0,2 %A A029889 torsten.sillke(AT)lhsystems.com %E A029889 a(0) = 1 prepended by _Gus Wiseman_, Dec 31 2020