This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A029912 #11 Aug 21 2022 11:47:31 %S A029912 1,3,5,5,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,11,7,7,7,11,7,7,7,11,11,11, %T A029912 11,7,7,13,11,7,7,17,7,13,13,7,7,7,7,7,7,7,13,11,7,7,7,17,7,23,11,13, %U A029912 13,7,7,7,13,19,17,7,7,7,7,13,13,7,7,7,7,19,19,7,7,13,7,7,7,23,7 %N A029912 Start with n; repeatedly sum prime factors (counted with multiplicity) and add 1, until reach 1, 6 or a prime. %C A029912 If p is in A023200 then a(3*p) = p+4. It appears that all n > 35 such that a(n) > n/3 are 3*p for p in A023200. - _Robert Israel_, Dec 18 2019 %H A029912 Robert Israel, <a href="/A029912/b029912.txt">Table of n, a(n) for n = 1..10000</a> %e A029912 20 -> 2+2+5+1 = 10 -> 2+5+1 = 8 -> 2+2+2+1 = 7 so a(20)=7. %p A029912 f:= proc(n) option remember; %p A029912 local v; %p A029912 v:= add(t[1]*t[2],t=ifactors(n)[2])+1; %p A029912 if v = 1 or v = 6 or isprime(v) then return v fi; %p A029912 procname(v) %p A029912 end proc: %p A029912 map(f, [$1..100]); # _Robert Israel_, Dec 18 2019 %t A029912 a[n_] := a[n] = If[n==1, 1, Module[{v}, v = Sum[t[[1]]*t[[2]], {t, FactorInteger[n]}]+1; If[v==1 || v==6 || PrimeQ[v], Return[v]]; a[v]]]; %t A029912 a /@ Range[100] (* _Jean-François Alcover_, Aug 21 2022, after _Robert Israel_ *) %K A029912 nonn %O A029912 1,2 %A A029912 _Dann Toliver_