This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A029933 #23 Sep 28 2019 03:25:46 %S A029933 2,6,8,15,12,28,16,135,80,198,24,455,28,360,256,2295,36,2660,40,2079, %T A029933 1408,828,48,11375,312,1134,2240,6525,60,76384,64,75735,1088,1890, %U A029933 3456,1599325,76,2340,4480,767151,84 %N A029933 Numerator of n * Product_{d|n} (1 + 1/d). %H A029933 Amiram Eldar, <a href="/A029933/b029933.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Harvey P. Dale) %F A029933 Given p prime, a(p) = 2p + 2, since p(1 + 1/1)(1 + 1/p) = 2p + 2, see A089241. - _Alonso del Arte_, Mar 02 2017 %e A029933 a(6) = 28. The divisors of 6 are 1, 2, 3, 6. We multiply 2 * (1 + 1/2)(1 + 1/3)(1 + 1/6) to get 14/3, which multiplied by 6 is 28. %e A029933 a(7) = 16, since 2 * 7 + 2 = 16. %e A029933 a(8) = 135. The divisors of 8 are 1, 2, 4, 8. We multiply 2 * (1 + 1/2)(1 + 1/4)(1 + 1/8) to get 135/32, which multiplied by 8 is 135/4, the numerator of which is 135. %p A029933 with(numtheory): A029933 := proc(n) local i,j; j := n; for i in divisors(n) do j := j*(1+1/i); od; end; %t A029933 Numerator[Table[n * Times@@((1 + 1/#)&/@Divisors[n]), {n, 50}]] (* _Harvey P. Dale_, Dec 14 2014 *) %o A029933 (PARI) a(n) = my(d=divisors(n)); numerator(n*prod(i=1, #d, (d[i]+1)/d[i])); \\ _Michel Marcus_, Mar 06 2017 %Y A029933 Cf. A029934 (denominators). %K A029933 nonn,frac %O A029933 1,1 %A A029933 _N. J. A. Sloane_