This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A029936 #17 Dec 15 2017 07:26:59 %S A029936 1,2,2,3,4,4,6,6,8,8,10,10,12,12,16,14,16,16,18,20,24,20,22,24,28,24, %T A029936 30,30,28,32,30,32,40,32,48,40,36,36,48,48,40,48,42,50,64,44,46,56,60, %U A029936 56,64,60,52,60,80,72,72,56 %N A029936 Number of cusps of Gamma_1(n)\P_1(Q). %D A029936 F. Hirzebruch et al., Manifolds and Modular Forms, Vieweg, 2nd ed. 1994, p. 158. %H A029936 G. C. Greubel, <a href="/A029936/b029936.txt">Table of n, a(n) for n = 1..10000</a> %F A029936 Except for n=1, 2, 4, this is A029935(n)/2. %F A029936 a(n) = (1/2)*Sum_{d divides n} phi(d)*phi(n/d), with a(1)=1, a(2)=2, a(3)=2, a(4)=3, and phi(n) = A000010(n). - _G. C. Greubel_, Dec 13 2017 %t A029936 a[1] = 1; a[2] = 2; a[4] = 3; a[n_] := DivisorSum[n, EulerPhi[#]* EulerPhi[n/#]&]/2; Array[a, 60] (* _Jean-François Alcover_, Oct 03 2016 *) %o A029936 (PARI) for(n=1,30, print1(if(n==1, 1, if(n==2, 2, if(n==3, 2, if(n==4, 3, sumdiv(n, d, eulerphi(d)*eulerphi(n/d))/2)))), ", ")) \\ _G. C. Greubel_, Dec 13 2017 %K A029936 nonn,nice %O A029936 1,2 %A A029936 _N. J. A. Sloane_