cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A030010 Inverse Euler transform of primes.

Original entry on oeis.org

2, 0, 1, 0, 2, -3, 2, -4, 4, -3, 4, -5, 10, -21, 20, -18, 34, -46, 64, -99, 126, -182, 258, -319, 464, -685, 936, -1352, 1888, -2570, 3690, -5188, 7292, -10501, 14742, -20766, 29610, -41650, 59052, -84338, 119602, -170279, 242256, -343356, 489550, -698073
Offset: 1

Views

Author

Keywords

Examples

			(1-x)^(-2) * (1-x^3)^(-1) * (1-x^5)^(-2) * (1-x^6)^3 * (1-x^7)^(-2) * ... = 1 + 2*x + 3*x^2 + 5*x^3 + 7*x^4 + ... .
		

Crossrefs

Programs

  • Mathematica
    pp = Prime[Range[n = 100]]; s = {};
    For[i = 1, i <= n, i++, AppendTo[s, i*pp[[i]] - Sum[s[[d]]*pp[[i-d]], {d, i-1}]]];
    Table[Sum[If[Divisible[i, d], MoebiusMu[i/d], 0]*s[[d]], {d, 1, i}]/i, {i, n}] (* Jean-François Alcover, May 10 2019 *)

Formula

Product_{k>=1} 1/(1-x^k)^{a(k)} = 1 + Sum_{n>=1} prime(n) * x^n.
From Vaclav Kotesovec, Oct 09 2019: (Start)
a(n) ~ -(-1)^n * A072508^n / n.
a(n) ~ -(-1)^n / (n * A088751^n). (End)